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Technical Overview 
An operating system provides facilities that allow applications to carry out tasks without having to worry 

about details of underlying hardware.  For example, when an application saves a file to disk, it is able to 

carry out that task without knowledge of the underlying disk geometry or transport protocol, because 

the operating system implements and controls the mechanisms for converting the high-level application 

request into a low-level hardware command.  Applications rely heavily on the operating system for 

accessing low-level hardware resources, and computer forensic tools, for the most part, are no 

exception.  Even popular disk forensic tools such as The Sleuth Kit [1], which provides raw disk access for 

manually extracting data from popular file system formats, still rely on various drivers provided by the 

operating system to access the data on disk.  The operating system in turn relies on the hardware to 

operate correctly and conform to certain standards and rules.  This trust relationship is a fundamental 

design principle of the Windows Driver Framework and is exhibited in all driver and device stacks in the 

operating system.  Figure 1 illustrates the chain of trust for the mass storage device stack or “Normal I/O 

Path”. 
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Figure 1:  Mass storage device stack or "Normal I/O Path" 

In this trust chain, an I/O request initiates in the user space layer and travels a long winding path 

through the normal I/O path, until it eventually reaches the physical disk in the hardware layer.  Each 

driver in the chain performs its intended function and passes the request down to the next driver – all 

coordinated by the operating system I/O subsystem.  The Host Bus Adapter (HBA), firmware on the 

physical disk, and miniport driver work together to complete the request and pass it back up the driver 

chain to the user. 
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Rootkits operate in the kernel space layer and install themselves into one or more of the components in 

this normal I/O path in order to manipulate disk contents (e.g., to hide files).  Once the normal I/O path 

is contaminated in this manner, it becomes useless to any driver or application above it, since it is 

returning altered data.  This includes forensic tools that might be relying on the normal I/O path to 

search for evidence on a hard drive.  Contaminated evidence can cause an active investigation to be 

misled and is typically not admissible in court. 

Numerous solutions have been proposed to this contamination problem over the past 20 years.  Anti-

virus and HIPS vendors attempt to uninstall the rootkits dynamically or put measures in place to prevent 

them from installing at all.  This approach becomes a classic cat-and-mouse game, as rootkit authors 

simply install at some other junction in the normal I/O path or subvert the prevention measure itself.  

Additionally, it is often the case that “whoever is there first” wins this battle, since all software that 

operates at the kernel space layer has equal privileges.  Microsoft itself has put measures in place to 

protect critical components in trust chains such as the normal I/O path, but rootkit authors outsmart 

these measures and manage to infect systems. 

Since the battle for disk control is raging in the normal I/O path, this paper introduces a novel technique 

to control the hard disk through a completely different I/O path:  what is referred to as the crash dump 

I/O path.  The crash dump I/O path, illustrated in Figure 2, is completely separate from the normal I/O 

path and is largely hidden and undocumented by Microsoft.  It is used by the operating system when the 

system becomes unstable (e.g., Blue Screen of Death) to save critical debugging information to disk 

(inside what is called a crash dump file).  This process is known as the crash dump process.   
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Figure 2:  The Crash Dump I/O Path 

Aside from missing most of the components in the normal I/O path, the major difference in the crash 

dump I/O path is that it uses a special copy of the port and miniport drivers.  When a system crash 

occurs, since the operating system cannot guarantee the critical fault did not occur in one of the drivers 

in the normal I/O path, it uses a separate copy of the port and miniport driver for the boot device to 

write to the disk.   

The port driver is an abstraction interface provided by Microsoft that allows higher-level drivers to 

communicate with the disk without bothering with protocol-specific details.  It communicates with a 

manufacturer-provided miniport driver beside it, which implements a hardware-specific interface to the 

Host Bus Adapter of the physical disk.   

When the crash dump process is initiated, the normal I/O path is disabled.  The operating system 

activates the special dump port and miniport drivers and writes the crash dump file to disk using special 

functions provided by the dump port driver.  These functions restrict the operating system to only open, 

write and close a dump file. 
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Using a special technique, illustrated in Figure 3, it is possible to gain access to the crash dump I/O path 

and read or write to disk without bothering with the normal I/O path.  The approach is similar to the 

crash dump process briefly described above.  However, rather than using the provided dump port 

functions, which only allow control of the crash dump file in limited ways, the technique involves using 

the dump port driver’s hidden StartIo or DispatchCrb functions to send read or write requests 

directly to the hardware, without any restrictions.  Since these crash dump drivers are part of a 

mechanism supported by Microsoft, this technique is for the most part portable to all versions of 

Windows.  It is also applicable to multiple transport protocols such as IDE and RAID.   

 

Figure 3:  Modified use of the Crash Dump I/O Path 

Since these dump drivers are not initialized like normal drivers and are not part of the normal I/O path, 

it is extremely difficult for rootkits to hook them in classic ways (and doing so might make the system 

unusable, which rootkit authors would not want).  At the time of this writing, there are no known 

rootkits in the wild that infect the crash dump I/O path.  The author speculates this is partially because 

of the technical challenges and because of the possibility of destabilizing the system if the crash dump 

I/O path is corrupted.  In other words, infecting the crash dump I/O path is a risky proposition for rootkit 
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authors, so they are likely to avoid contaminating it.  This fact makes it a desirable method for collecting 

forensic evidence. 

This paper will illustrate how this technique can be used to subvert one of the lowest-level I/O hooking 

rootkits in the wild:  Master Boot Record (MBR) rootkits (or simply bootkits).  Bootkits have existed for 

decades but are more recently gaining widespread attention with the growing deployment of nasty 

bootkits such as TDL4 and Popureb.  The most advanced versions of these rootkits hook the normal I/O 

path at the lowest possible level:  the port and miniport drivers.  It infects these drivers, replaces the 

MBR with an infected one, and fools forensic tools into thinking the system is not infected by returning a 

clean copy of the MBR.  Since this technique leverages the crash dump I/O path, it is possible to reveal 

the true, infected MBR. 

The following section covers in greater detail the crash dump process itself, from Windows 2000 up to 

Windows 7, and how the crash dump I/O path can be used to control the disk. 

The Crash Dump Mechanism In-Depth 
On system boot-up, the kernel initializes a number of critical system components, one of which the 

crash dump mechanism, which is used to save debugging information to disk when the system 

encounters an unrecoverable condition (a.k.a, crash, blue screen, or bugcheck).  The crash dump 

mechanism consists of the crash dump driver stack and various global kernel data structures that 

maintain state information. 

Overview of the Crash Dump Driver Stack 

The crash dump driver stack is used to write a crash dump file to disk when the system crashes.  The 

Windows kernel decides what disk drivers are required given the hardware attributes of the boot device 

(such as transport protocol) and loads/maps them into memory.  The crash dump stack consists of the 

following drivers: 

1. A dump port driver – an abstraction interface provided by the operating system; implements a 

specific transport protocol (such as SCSI or IDE); the operating system provides three such port 

drivers:  scsiport.sys (SCSI), ataport.sys (ATA/IDE), and storport.sys (optimized 

for RAID) 

2. A dump miniport driver – a hardware-specific driver provided by the vendor which translates 

generic operating system commands into vendor-specific commands 

3. One or more crash dump filter drivers – these are typically third-party drivers that need to 

perform some pre or post processing of the crash dump file data, such as whole-disk encryption 

drivers that wish to encrypt the crash dump file itself. 

 

There will always be only one dump port driver and one dump miniport driver.  Table 1 below describes 

some of the drivers that can be found in the crash dump stack. 

 

Driver Name On Disk Driver Base Name in Memory Purpose 

diskdump.sys dump_diskdump SCSI/Storport dump port driver 
with required exports from 
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scsiport.sys and storport.sys. 
This driver is unloaded. 

dumpata.sys dump_dumpata IDE/ATA dump port driver with 
required ataport.sys exports. 
This driver is unloaded. 

scsiport.sys dump_scsiport The final SCSI/Storport dump 
port driver. 

ataport.sys dump_ataport The final IDE/ATA dump port 
driver. 

atapi.sys dump_atapi An older, generic ATAPI miniport 
driver provided by the OS for 
IDE/ATA drives 

vmscsi.sys dump_vmscsi The miniport driver provided by 
VMWare for SCSI drives. 

LSI_SAS.sys dump_LSI_SAS The miniport driver provided by 
LSI Corporation for serial-
attached storage drives. 

dumpfve.sys dump_dumpfve Windows full volume encryption 
crash dump filter driver 

Table 1:  Common crash dump stack drivers 

The crash dump stack is initialized and configured when a page file is created on any fixed disk, which 

occurs: 

 At system boot up during kernel phase 1 initialization 

 When NtCreatePagingFile() is called 

 

The crash dump stack is used when: 

 A bug check occurs 

 The system is about to hibernate 

 

The crash dump stack must be initialized before a crash dump file can be written to a paging file.  

Storage for a crash dump file is allocated and initialized for the first paging file on a fixed disk drive.  The 

first time this happens is during phase 1 initialization of system boot up, just after the boot device has 

been initialized.  The kernel reads the name of the boot device’s page file(s) from the registry key 

HKLM\System\CurrentControlSet\Control\Session Manager\Memory 

Management\ExistingPageFiles.  Normally the page file stored at this location is 

C:\pagefile.sys, but it can be any drive and up to 16 page files.  The crash dump storage space 

will be allocated for the first paging file, and the crash dump stack is initialized.   

 

The crash dump stack is initialized and used differently based on operating system version. On operating 

systems prior to Windows Vista, the kernel performs all of the crash dump stack initialization and dump 

file creation.  For Vista and later operating systems, the majority of this code (along with new features) 

was moved to a new driver, crashdmp.sys.  Furthermore, whereas the older kernel exported type 

information for many of the (partially documented) critical crash dump data structures, the 
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crashdmp.sys driver introduced a host of new data structures that are neither documented nor 

exported. 

 

There are several principles governing the use of the crash dump stack in all versions of Windows: 

1. All processors are disabled except the one the current thread is executing on 

2. The active CPU becomes single-threaded (IRQL is raised to HIGH_LEVEL) and uninterruptible 

3. I/O sent to the crash dump stack is sent one request at a time 

4. If IDE controller, only the channel containing the device with the page file is enabled. 

Crash Dump Stack Initialization Prior to Windows Vista 

In older operating systems, the crash dump stack and all its critical components were contained in a 

global variable named IopDumpControlBlock.  This variable is of an undocumented but exported 

type DUMP_CONTROL_BLOCK and contains information about basic system properties, crash dump 

settings from the registry, and meta-information about the crash dump file itself. 

 
 

typedef struct _DUMP_CONTROL_BLOCK { 

    UCHAR Type; 

    CHAR Flags; 

    USHORT Size; 

    CCHAR NumberProcessors; 

    CHAR Reserved; 

    USHORT ProcessorArchitecture; 

    PDUMP_STACK_CONTEXT DumpStack; 

    PPHYSICAL_MEMORY_DESCRIPTOR MemoryDescriptor; 

    ULONG MemoryDescriptorLength; 

    PLARGE_INTEGER FileDescriptorArray; 

    ULONG FileDescriptorSize; 

    PULONG HeaderPage; 

    PFN_NUMBER HeaderPfn; 

    ULONG MajorVersion; 

    ULONG MinorVersion; 

    ULONG BuildNumber; 

    CHAR VersionUser[32]; 

    ULONG HeaderSize;                

    LARGE_INTEGER DumpFileSize;      

    ULONG TriageDumpFlags;         

    PUCHAR TriageDumpBuffer;       

    ULONG TriageDumpBufferSize;     

}DUMP_CONTROL_BLOCK, *PDUMP_CONTROL_BLOCK; 

 

Figure 4:  The DUMP_CONTROL_BLOCK structure 

 

The most important field is DumpStack, which is an undocumented (but exported) structure of type 

DUMP_STACK_CONTEXT shown below.  This structure is a container for information about the crash 

dump drivers and associated configuration.  

 
 

typedef struct _DUMP_STACK_CONTEXT { 

    DUMP_INITIALIZATION_CONTEXT Init; 

    LARGE_INTEGER               PartitionOffset; 

    PVOID                       DumpPointers; 

    ULONG                       PointersLength; 

    PWCHAR                      ModulePrefix; 

    LIST_ENTRY                  DriverList; 

    ANSI_STRING                 InitMsg; 
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    ANSI_STRING                 ProgMsg; 

    ANSI_STRING                 DoneMsg; 

    PVOID                       FileObject; 

    enum _DEVICE_USAGE_NOTIFICATION_TYPE    UsageType; 

} DUMP_STACK_CONTEXT, *PDUMP_STACK_CONTEXT; 

 
Figure 5:  The DUMP_STACK_CONTEXT structure 

The DumpPointers field contains hardware-specific information about the disk drive (obtained 

through a call to the disk driver via IOCTL_SCSI_GET_DUMP_POINTERS) which is used during write 

I/O operations to the crash dump file.  The DriverList field contains a linked list of data structures 

that describe the driver image of each driver in the crash dump stack (such as crash dump filter drivers).  

This field will be used at actual crash dump time to initialize each driver.   The Init field of type 

DUMP_INITIALIZATION_CONTEXT (undocumented but exported), shown below, is only partially 

filled in during this phase of initialization.  The highlighted fields below are filled in later by the crash 

dump port driver at the time a crash dump is initiated.  These fields are pointers to functions exported 

by the dump port driver which provide the kernel the ability to write the crash dump data to the crash 

dump file. 

 
 

typedef struct _DUMP_INITIALIZATION_CONTEXT { 

    ULONG Length; 

    ULONG Reserved; 

    PVOID MemoryBlock; 

    PVOID CommonBuffer[2]; 

    PHYSICAL_ADDRESS PhysicalAddress[2]; 

    PSTALL_ROUTINE StallRoutine; 

    PDUMP_DRIVER_OPEN OpenRoutine; 

    PDUMP_DRIVER_WRITE WriteRoutine; 

    PDUMP_DRIVER_FINISH FinishRoutine; 

    struct _ADAPTER_OBJECT *AdapterObject; 

    PVOID MappedRegisterBase; 

    PVOID PortConfiguration; 

    BOOLEAN CrashDump; 

    ULONG MaximumTransferSize; 

    ULONG CommonBufferSize; 

    PVOID TargetAddress;  

    PDUMP_DRIVER_WRITE_PENDING WritePendingRoutine; 

    ULONG PartitionStyle; 

    union  { 

             struct { 

              ULONG Signature; 

              ULONG CheckSum; 

             } Mbr; 

             struct { 

              GUID DiskId; 

             } Gpt; 

           } DiskInfo; 

} DUMP_INITIALIZATION_CONTEXT, *PDUMP_INITIALIZATION_CONTEXT; 

 
Figure 6:  The DUMP_INITIALIZATION_CONTEXT structure 

The call chain outline below summarizes what kernel functions are responsible for initializing the crash 

dump stack in operating systems prior to Windows Vista. 

 

 KiInitializeKernel() -> IoInitSystem()  OR  NtCreatePagingFile(): 

o IoInitializeCrashDump() 
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 IopInitializeDCB() – read dump settings from registry, allocate memory for 

global IopDumpControlBlock 

 IoGetDumpStack()->IopGetDumpStack() – Fills DumpStack and 

DumpInit substructures of global IopDumpControlBlock  with boot device 

type, geometry, and dump retrieval pointers; responsible for locating the port and 

miniport drivers and mapping them into memory with the “dump_” prefix using 

nt!IopLoadDumpDriver() 

 IopCompleteDumpInitialization() – sets dump range limits and 

calculates IopDumpControlBlock checksum 

Crash Dump Stack Initialization in Windows Vista and Later 

On Windows Vista and later operating systems, most of the crash dump stack initialization code was 

moved from the kernel and integrated with additional features into a driver, 

%SYSTEM32%\Drivers\crashdmp.sys.  The kernel’s IoInitializeCrashDump simply loads 

this crash dump driver into memory and calls its entry point with two arguments:  the name of the “arc” 

boot device and a pointer to a global crash dump callback table.  The crash dump driver’s entry point 

loads the callback table with pointers to callback functions for the kernel to use, as shown in Table 2 

below. 

 

Table Offset Value 

0x0 1 
0x4 1 
0x8 CrashdmpInitialize 

0xC CrashdmpLoadDumpStack 

0x10 CrashdmpInitDumpStack 

0x14 CrashdmpFreeDumpStack 

0x18 CrashdmpDisable 

0x1C CrashdmpNotify 

0x20 CrashdmpWrite 

0x24 CrashdmpUpdatePhysicalRange 

Table 2:  The crashdmp call table 

After the entry point of crashdmp.sys fills the callback table, IoInitializeCrashDump calls the 

third entry in the table, which is always a pointer to CrashDmpInitialize.  This function takes two 

arguments:  a handle to the paging file and a pointer to a kernel-global dump block variable (referred to 

as DumpBlock) of an undocumented and unexported type.  DumpBlock is where crash dump 

information will be stored when the system crashes.  Aside from a single field in the structure, 

CrashDmpInitialize does not modify this dump block variable.  Instead, it initializes various 

internal dump control structures that take the place of the global kernel dump control block 

IopDumpControlBlock used in prior operating system versions (such as the sub-structures 

DumpInit and DumpStack).  

 

The call chain outline below summarizes the functions involved in initializing the crash dump stack in 

Vista and later operating systems. 
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 KiInitializeKernel() -> IoInitSystem() OR  NtCreatePagingFile(): 

o IoInitializeCrashDump() 

 IopLoadCrashDumpDriver() – loads crashdmp.sys into memory and calls 

its entry point, passing the arc name of the boot device and a pointer to crash dump 

call table 

 Crashdmp!DriverEntry() – fills crash dump call table 

 Crashdmp!CrashDmpInitialize() – reads registry settings, initializes an 

internal DumpBlock and populates the crash dump driver stack (port, miniport and 

filter drivers) as follows: 

 Crashdmp!CrashdmpLoadDumpStack() – queries the boot device 

and then calls the following functions: 

o Crashdump!QueryPortDriver() – sends various IOCTLs to 

the port driver to collect partition information, disk geometry, and 

SCSI dump pointers. 

o Crashdmp!LoadPortDriver() – responsible for locating the 

port and miniport drivers and mapping them into memory with the 

“dump_” prefix.  See comments in the next paragraph for details. 

o Crashdmp!LoadFilterDrivers() – loads crash dump filter 

drivers stored in the registry at 

HKLM\CurrentControlSet\Control\CrashControl\Du

mpFilters, also prefixed with “dump_” 

o Crashdmp!InitializeFilterDrivers() – calls the entry 

point of all crash dump filter drivers 

 

Crashdmp!LoadPortDriver() is responsible for an important step in the crash dump stack 

initialization process – loading the correct port and miniport drivers.  It calls 

Crashdmp!GetLegacyPortDriverName() which uses the following strategy to locate the name 

of the port driver.  It calls GetPortDriverName(), which calls GetPortDriverObject() to get 

a handle to the port driver object represented by calling 

ZwOpenFile()/ObReferenceObjectByHandle() on the named object 

\\Device\ScsiPort<x> where “x” is the port number of the SCSI boot device.  The driver object 

contains a pointer to the driver path and image name.  For non-SCSI devices, a driver object was already 

obtained, so GetPortDriverObject() is not called.  It also loads the miniport driver associated 

with this boot device in the same manner. 

Initialization of Drivers in the Crash Dump Driver Stack 

In the preceding sections concerning dump stack initialization, nt!IopGetDumpStack (prior to Vista) 

and crashdmp!CrashDmpInitialize (Vista and later) were responsible for loading a series of 

drivers into the crash dump stack.  These drivers include a port driver, a miniport driver, and one or 

more crash dump filter drivers.  All of these drivers are re-named with a prefix of “dump_” when they 

are mapped into memory. 
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The port driver in the crash dump stack is actually a modified version of the original OS-provided port 

driver.  For ATA transport protocols, the dump port driver is named on disk as dumpata.sys.  For SCSI 

transports (as well Storport, Microsoft’s optimized version of scsiport), the dump port driver is named 

on disk as diskdump.sys.  The miniport driver in the crash dump stack is a copy of the manufacturer-

provided miniport driver for the boot device.  After locating the appropriate miniport and port drivers 

(e.g., if the boot device is using SCSI transport protocol, the dump port driver will be diskdump.sys), 

the kernel (or crashdmp.sys) maps a copy of these drivers into memory, so that they are 

permanently resident and available when a system crash occurs.  To insure the copies of the port and 

miniport drivers used for the crash dump stack do not conflict with the normal I/O path, the copies are 

prefixed with the string “dump_” (e.g., “dump_scsiport”, “dump_storport” or “dump_ataport”).  This 

mapping is also done for the miniport driver (eg, “dump_vmscsi” for vmscsi.sys, a SCSI miniport 

driver provided by VMWare) and all of the crash dump filter drivers (e.g., “dump_dumpfve” for 

dumpfve.sys, a Microsoft-provided full volume encryption driver).  One exception to this naming 

convention is on systems where the miniport driver is linked against the storport port driver, the 

operating system will create a “hybrid” dump port driver named “dump_diskdump.sys”.  This dump port 

driver contains both scsiport and storport exports, since the storport protocol is based on SCSI.   

 

It is worth noting that the operating system does not initialize typical driver management structures 

such as DRIVER_OBJECT and DEVICE_OBJECT for the crash dump drivers.  As a result, these often-

hooked management structures are not available for rootkits to tamper with. 

 

There are some important differences between the dump port driver in the Crash Dump I/O path and 

the port driver in the Normal I/O path that allow the dump port driver to operate without normal 

operating system components.  The dump port driver keeps all of the exported functions that the 

miniport driver needs but differs from the standard port driver in the following crucial ways: 

1. Most internal functions not necessary for dump file creation and writing are stripped 

2. Three new exported functions are provided to the kernel for crash dump file generation – 

DiskDumpOpen, DiskDumpWrite, DiskDumpFinish 

3. For SCSI drives, an internal function called StartIo is used to transmit a single SCSI request 

block to the dump miniport driver for completion; for IDE drives, an IDE request block is sent via 

the internal function DispatchCrb 

 

Similarly, the dump miniport driver must be modified by the kernel to operate in the crash dump stack.  

When a vendor provides a miniport driver to operate its hardware, the driver is linked against the 

appropriate port driver.  The operating system must “rebind” the dump miniport driver to the dump 

port driver. This is necessary because the original miniport driver is linked against the original port 

driver.  Without this rebinding, the dump miniport driver would attempt to communicate with the 

original port driver.   
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With the changes noted above and by forcing the dump miniport driver to use the dump port driver, the 

operating system has essentially circumvented the normal I/O path.  Furthermore, Microsoft requires 

that manufacturer-supplied miniport drivers operate in “dump mode” [2]: 

 

A storage miniport driver that manages an adapter for a boot device is subject to special restrictions during 

a system crash. While dumping the system's memory image to disk, the miniport driver must operate within 

a different environment. The usual communication between the miniport driver, the port driver, and disk 

class driver is interrupted. The kernel does disk I/O by direct calls to the disk dump port driver 

(diskdump.sys for SCSI adapters or dumpata.sys for ATA controllers), bypassing file systems, and the normal 

I/O stack. The disk dump driver, in turn, calls the boot device's miniport driver to handle all I/O operations, 

and the disk dump driver intercepts all of the miniport driver's calls to the port driver. 

 

In other words, the miniport driver must be able to cope with this special crash dump mode.  This is 

important, because it implies that the crash dump I/O path, something the technique in this paper relies 

on, is guaranteed to be supported regardless of hard drive type or manufacturer.  According to MSDN, 

the miniport driver is instructed to operate in dump mode when the OS calls its DriverEntry with 

null parameters instead of the normal DriverEntry parameters. 

Crash Dump Stack Usage Prior to Windows Vista 

If the system crashes, and it has been configured to write a crash dump, the kernel uses the already-

initialized crash dump stack to write the crash dump file to the paging file on disk. 

 

When the system encounters a crash, the kernel function KeBugCheck2() is called, which in turn 

calls IoWriteCrashDump().   This function verifies the checksum of IopDumpControlBlock 

(the global variable that contains information about the crash dump stack) and calls 

IoInitializeDumpStack(), which walks the list of crash dump drivers stored in the 

DriverList field of the DUMP_STACK_CONTEXT structure as mentioned in the crash dump driver 

initialization section.  For each driver in the dump stack, its DriverInit (DriverEntry) routine is 

called.  The first driver in the dump stack (always the dump port driver) gets the 

DUMP_INITIALIZATION_CONTEXT structure (shown below) stored in the 

DUMP_STACK_CONTEXT passed to its DriverEntry as the second argument. This driver populates 

the initialization structure below with functions that will be used by the kernel to do disk I/O, 

highlighted below. 

 
 

typedef struct _DUMP_INITIALIZATION_CONTEXT { 

    ULONG Length; 

    ULONG Reserved; 

    PVOID MemoryBlock; 

    PVOID CommonBuffer[2]; 

    PHYSICAL_ADDRESS PhysicalAddress[2]; 

    PSTALL_ROUTINE StallRoutine; 

    PDUMP_DRIVER_OPEN OpenRoutine; 

    PDUMP_DRIVER_WRITE WriteRoutine; 

    PDUMP_DRIVER_FINISH FinishRoutine; 

    struct _ADAPTER_OBJECT *AdapterObject; 

    PVOID MappedRegisterBase; 
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    PVOID PortConfiguration; 

    BOOLEAN CrashDump; 

    ULONG MaximumTransferSize; 

    ULONG CommonBufferSize; 

    PVOID TargetAddress;  

    PDUMP_DRIVER_WRITE_PENDING WritePendingRoutine; 

    ULONG PartitionStyle; 

    union  { 

             struct { 

              ULONG Signature; 

              ULONG CheckSum; 

             } Mbr; 

             struct { 

              GUID DiskId; 

             } Gpt; 

           } DiskInfo; 

} DUMP_INITIALIZATION_CONTEXT, *PDUMP_INITIALIZATION_CONTEXT; 

 
Figure 7:  The dump callback routines in the DUMP_INITIALIZATION_CONTEXT structure 

The dump port driver populates the OpenRoutine, WriteRoutine and FinishRoutine fields of 

this structure with pointers to its own callback functions, which the kernel will call to write the crash 

dump file to the boot disk drive’s paging file.   

 

After the dump port driver is initialized, the second driver in the crash dump stack is the dump miniport 

driver.  The dump port driver relies on the miniport driver to carry out the I/O requests.  The miniport 

DriverEntry() routine registers information about its device’s hardware with the Port driver by 

calling the export ScsiPortInitialize() for SCSI and AtaPortInitialize() for IDE.  It 

passes a structure that contains pointers to callbacks for various operations required by the port driver:  

HwInitialize, HwResetBus, HwStartIo, HwInterrupt, HwAdapterControl, and 

HwFindAdapter.  

Finally, IoInitializeDumpStack() calls the DiskDumpOpen() callback of the dump port driver 

to open the boot partition in preparation for writing to the page file. 

Now that post-initialization of the crash dump I/O path is complete, IoWriteCrashDump() creates 

the dump file as follows: 

o Displays the dump string “Beginning dump of physical memory”, stored in the 

DUMP_CONTROL_BLOCK structure 

o Calculates the dump storage space required based on configuration 

o Fills a dump header with bug check codes and other debug information 

o Invokes all BugCheckDumpIoCallback callbacks registered with the kernel via 

KeRegisterBugCheckReasonCallback() [5], passing the dump header 

o Writes the appropriate dump file and data as configured in the system registry.  If the 

system is configured to dump only summary crash dumps, IoWriteCrashDump() calls 

IopWriteSummaryHeader()/IopWriteSummaryDump().  If the system is 

configured for a triage dump, it calls IopWriteTriageDump(). 

o Invokes all BugCheckSecondaryDumpDataCallback callbacks to allow drivers to 

append data to the completed crash dump file. 
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o Invokes all BugCheckDumpIoCallback callbacks, informing them crash dump is 

complete. 

Crash Dump Stack Usage in Windows Vista and Later 

The usage of the crash dump stack in Vista and later operating systems is similar to prior versions, 

except the majority of the crash dump stack management code is in the crashdmp.sys driver.  

Additionally, new, undocumented dump structures are used in this driver.  As discussed earlier, the 

kernel uses a CrashDmpCallTable variable to call various internal functions within the 

crashdmp.sys driver. 

 

When the system encounters a crash, the kernel function KeBugCheck2() calls 

IoWriteCrashDump(), which behaves differently than versions of earlier operating systems.  

IoWriteCrashDump() does not call any entry points for drivers in the crash dump stack.  Instead, it 

just stores the dump information in the global crash dump block configured earlier, as follows: 

 Calls the eighth entry in the CrashDmpCallTable table, CrashDmpNotify() which 

simply validates the integrity of the internal dump context structure and displays the string 

“collecting data for crash dump” 

 Fills dump block with bug check codes and other debug information 

 Appends a triage dump if the system is configured to do so 

 Invokes all BugCheckAddPagesCallback callbacks and appends any dump pages returned 

by these callbacks to the dump data 

 Calls the ninth entry in the CrashDmpCallTable table, CrashDmpWrite(), passing the 

configured dump block 

At this point, the crashdmp.sys driver takes over writing the crash dump data to disk:  

IoWriteCrashDump() returns after this call and the kernel finishes bringing the system down after 

the bug check.  The process of writing the crash dump data to disk in CrashDmpWrite() is 

summarized in the following call stack outline: 

 CrashdmpInitDumpStack() 

o StartFilterDrivers() – this calls the DumpStart callback of each crash dump 

filter driver registered with the system. 

o InitializeDumpDriver() or InitializeDumpPath() 

 InitializeDumpDriver() – calls the entry point of each driver in the 

dump stack, passing a null pointer and a pointer to the 

DUMP_INITIALIZATION_CONTEXT structure to the dump port driver.  

After all dump drivers have been called, it calls the DiskDumpOpen callback 

provided by the dump port driver. 

 InitializeDumpPath() – first initializes the dump block structure before 

simply calling InitalizeDumpDriver() 
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o DumpWrite() – carries out the actual writing of crash dump data to disk based on the 

configured crash dump type: 

 FillDumpHeader() – loads the dump header with debugging information 

 WriteFullDump() or WriteKernelDump() or WriteMiniDump() – 

one of these functions is called to optionally append a full dump, kernel dump 

or mini dump to the dump header. 

o InvokeSecondaryDumpCallbacks() - Invokes all 

BugCheckSecondaryDumpDataCallback callbacks to allow drivers to append 

data to the completed crash dump file. 

o InvokeDumpCallbacks() - Invokes all BugCheckDumpIoCallback callbacks, 

informing them crash dump is complete. 

The dump port and miniport drivers operate the same as in prior versions of Windows. 

Leveraging the Crash Dump Stack 
The crash dump mechanism represents a pristine path to disk, tucked away in the bowels of the 

operating system.  The problem is that it is specifically limited to writing data to the disk (more 

accurately, to the paging file).  As the prior sections have outlined, crash dump data is written to disk by 

calling the dump port driver’s DiskDumpWrite export, which in turn calls the appropriate miniport 

function with a SCSI Request Block (SRB) or IDE Request Block (IRB).  There is an open, write and finish 

function exported by the dump port driver for use by the crash dump process, but no corresponding 

read function.  If there were a read function supplied, it would be a simple matter of calling that 

function to read disk.  The following section explores how to leverage what has been presented about 

the internal crash dump structures to coerce the crash dump stack to allow both reading and writing to 

arbitrary disk locations.  Figure 4 below summarizes the steps outlined in this section. 

 

Figure 8:  Using the crash dump I/O path 

Identify Crash Dump Port and Miniport Drivers 

Before the crash dump drivers can be used, they must be located in memory.  Since all drivers in the 

crash dump stack are prefixed with the string “dump_”, they can easily be singled out by searching the 

loaded module list for modules named with that prefix.  Since it is known that the dump port driver 

must be one of “dump_scsiport” (SCSI), “dump_storport” (Storport), or “dump_ataport” (for IDE/ATA), it 

is trivial to identify the dump port driver.  However, the dump miniport driver is provided by the 

hardware vendor and can be named anything (e.g., “dump_LSI_SAS”, “dump_vmscsi”, etc.).  The name 
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can be obtained by opening a handle to the boot device’s device object.  Typically, a handle to the boot 

device can be obtained through the named device \\Device\Harddisk0\DR0, which represents 

the device object for the boot disk as setup by the class driver (i.e., disk.sys).  This device object can 

be “walked” via kernel-provided API’s to find the lowest driver object attached to the disk device stack.  

The name stored in this lowest driver object will be the name of the miniport driver.  During crash dump 

initialization, the operating system obtains the miniport driver name using a global ARC string named 

ArcBootDeviceName which contains the Arc path information to the boot device.   

In certain versions of Windows, there is a second way to identify these drivers through the 

IOCTL_SCSI_GET_DUMP_POINTERS command.  If this command is successfully issued to the boot device 

(via the named device), a structure of documented type DUMP_POINTERS_EX is returned.  The last field 

in this structure is named DriverList and contains a null-separated list of the drivers in the dump stack. 

To verify the correct drivers are found, their code sections and/or export tables could be parsed to 

identify known/required functions. 

Now that the drivers have been located, there is an additional initialization step that must be 

completed.  It is useful to recap what is known about the crash dump stack at the point the system has 

booted up: 

1. The crash dump drivers have been mapped into memory 

2. The global dump structures have been initialized 

All components have been initialized, but an important step has not been completed:  calling the dump 

drivers’ entry points.  This isn’t done by the operating system until a bug check actually occurs and the 

system is crashing.  Thus, in order to use the crash dump stack outside of the operating system, the 

driver entry points must be called.  Since they have been located in memory, it is simply a matter of 

finding their module information (e.g., by walking the load driver module list using the 

PsLoadedModuleList technique) and calling their entry points with the correct structures.  As 

discussed in prior sections, the port driver takes the dump initialization structure as a second argument 

and the miniport driver takes two null arguments. 

Get Boot Device Information 

The following boot device information is required in order to use the crash dump I/O path: 

 Dump pointers – of type DUMP_POINTERS or DUMP_POINTERS_EX obtained via a 

IOCTL_SCSI_GET_DUMP_POINTERS query to the boot device; this query returns register 

mapping information and hardware port configuration information that is used by the miniport 

to program the device. 

 SCSI address – obtained via IOCTL_GET_SCSI_ADDRESS; contains PathId, TargetId, and Lun 

path information of the underlying device which are used in building the I/O request later in the 

technique. 
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Find the Dump Port Driver’s StartIo or DispatchCrb Routine 

At this point in the process, the crash dump drivers have been located and their entry points have been 

called.  How does one send disk read/write requests to these drivers?  To answer this question, it is 

necessary to quickly discuss how normal I/O is handled in Windows, since the first logical answer might 

be to try to communicate with the crash dump port driver’s device object.   

In Windows, I/O is processed by communicating with a logical representation of the physical hardware 

called a device object which is normally setup by the driver that runs the device.  In the case of a 

miniport driver in the normal I/O stack, the device object is actually setup by the operating system’s port 

driver on behalf of the miniport driver [3]: 

In some technology areas, a minidriver that is associated with a class driver or port driver does not have 

to create its own device objects. Instead, the class or port driver creates the device object, and receives 

all IRPs for the device. The class or port driver then uses a driver-specific method to pass the I/O request 

to the minidriver. 

For example, the disassembly of the normal I/O path’s SCSI port driver’s (scsiport.sys) 

ScsiPortInitialize() function, which all miniport drivers call in their DriverEntry() 

routine, shows that the port driver takes care of setting up a named device for the physical hardware 

hosted by the miniport driver: 

 

Figure 9:  The Normal I/O Path Port Driver configures the miniport’s device object 

However, this code does not exist in the dump port driver, which corroborates the discovery (discussed 

in the crash dump initialization section) that the dump drivers are loaded without creating any 

associated DRIVER_OBJECT or DEVICE_OBJECT structures.  Thus, the dump stack does not have a 

device object associated with it, and therefore traditional means of I/O will not work.  This makes 

perfect sense, because in normal use of the crash dump, the I/O subsystem would be disabled due to 

the system crash.   
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For SCSI devices, another possible way to send I/O to the crash dump port driver is through the dump 

port driver’s StartIo function.  The standard StartIo function as described on MSDN [6]: 

As its name suggests, a StartIo routine is responsible for starting an I/O operation on the physical device.  

Most lowest-level drivers provide a StartIo routine and rely on the I/O manager to queue IRPs to a 

system-supplied device queue. Some lowest-level drivers are designed to set up and manage their own 

supplemental IRP queues, but even these usually also provide a StartIo routine. 

As was already discussed, the I/O manager can’t be used to send IRP’s to the dump port driver’s 

StartIo function.  As the description above mentioned, some lowest-level drivers have their own 

internal queueing mechanism, and since the dump drivers are designed to operate in a special mode 

completely divorced of the I/O subsystem, it might be possible to call the StartIo function directly.   

Analysis shows that the StartIo function in the dump port driver takes a single argument (a deviation 

from the standard StartIo prototype, which takes two arguments), a SCSI Request Block (SRB).  In the 

Normal I/O path, I/O requests traverse the storage device stack down to a storage class driver, which 

converts the corresponding IRP to an SRB, which is passed to the storage port driver.  The port driver 

passes the SRB onto the miniport driver, which translates the request into a format specific to its 

hardware.  But in the crash dump scenario case, rather than an IRP being built by the I/O manager, it is 

possible to build the SRB directly using hardware-specific information needed to complete the request.  

This structure can then be sent directly to the dump port driver, which passes it to the miniport for 

completion. 

The StartIo routine is optional for all drivers, and although it is included in the crash dump port 

driver, it is not exported.  However, the function can be dynamically located by scanning the code 

(“.text”) section of the driver’s image in memory for some recognizable bytes. 

For IDE devices, the overall process is similar, but instead of StartIo with a single SRB argument, the 

dumpata port driver uses the internal function DispatchCrb which takes a single argument, a 

channel extension.  This function must also be dynamically located. 

Find the Dump Port Driver’s Device Extension 

At this point in the process, the crash dump drivers have been located and initialized, and the dump port 

driver’s StartIo/DispatchCrb function has been located, which will be used to send I/O requests 

to the device.  Before sending the request, there is some additional initialization that needs to take 

place.     

One of the critical pieces of this technique is manipulating the device extension structure which is 

passed between and used by both the dump port and miniport drivers.  For SCSI devices, the device 

extension structure contains similarities between the partially documented type 

HW_INITIALIZATION_DATA and the SCSI_PORT_DEVICE_EXTENSION from ReactOs [7].  For 

IDE devices, the structure is a channel extension structure, which stores information about a particular 

channel on an IDE controller.  For both cases, it is not necessary to know all of the details about what is 
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contained in these structures, as most of the required fields are populated when the dump port and 

miniport DriverEntry routines are called. 

However, it is necessary to manually initialize the field that represents the I/O request being sent.  

Normally this field is setup by the DiskDumpWrite callback when crash dump data is being written, 

but this function obviously is not going to be called when using the crash dump stack independent of the 

crash dump process.  Because the device extension is an internal (not exported) variable, its address 

must be located through some other means.  Basically an “information leak” is needed – that is, an 

instance in some function where a pointer to the device extension is stored in a register that survives 

the function.  Fortunately, such a leak exists in dump port drivers for both SCSI and IDE.  As an example, 

for the SCSI dump port driver diskdump.sys, the leak exists in the DiskDumpOpen function, which 

is a callback used by the kernel to prepare the crash dump file: 

 

 

Figure 10:  Information leak in DiskDumpOpen callback of diskdump.sys 

In the disassembly above, a pointer to the internal device extension variable _DeviceExtension is 

stored in the ecx register and is never cleared.  Therefore, simply calling the DiskDumpOpen callback 

will provide the pointer to the internal variable.  At this point, the field can be manually allocated and 

the request sent.  This information “leak” exists on all versions of Windows in the SCSI dump port driver 

diskdump.sys, but the offset is different for 64-bit architectures.  Table 3 below shows where these 

leaks exist according to transport and architecture. 

Transport Leaking Function Leaked in Register Architecture 

SCSI/Storoprt 
(diskdump.sys) 

DiskDumpOpen ecx x86 

SCSI/Storport 
(diskdump.sys) 

DriverEntry rdx x64 

IDE (dumpata.sys) IdeDumpOpen ecx x86 



   
 

© Copyright 2012 Mandiant Page 22 
 

IDE (dumpata.sys) IdeDumpOpen rcx x64 
Table 3:  Locations of Device Extension Leaks 

 

Instantiate and Transmit SCSI/IDE Request Block 

After locating the dump port driver’s device extension, the field that represents the I/O request must be 

initialized.  

For the SCSI dump port driver, this field is an MDL stored in the device extension.  The MDL describes 

the buffer to be read from or written to pertaining to the requested operation (the DataBuffer field 

of the SRB).  The MDL is one of the arguments to DiskDumpWrite, whose prototype is: 

 

typedef 

NTSTATUS 

(*PDUMP_DRIVER_WRITE) ( 

    IN PLARGE_INTEGER DiskByteOffset, 

    IN PMDL Mdl 

    ); 

 
Figure 11:  DiskDumpWrite prototype 

DiskDumpWrite in turn calls MmMapMemoryDumpMdl() to map the MDL into a fixed address 

space, as shown in the disassembly below, and the resulting pointer is stored at offset 0xD0 (0x118 

on x64). 

 

   
Figure 12:  DiskDumpWrite stores the MDL in the device extension 

The DiskDumpWrite callback is not used by the technique described in this paper, because it carries 

out only a write operation.  Instead, the StartIo function, whose disassembly is shown below, is used 

to execute an arbitrary SRB. 
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Figure 13:  StartIo also allocates the MDL via AllocateScatterGatherList() 

StartIo() stores the provided MDL at the same offset as DiskDumpWrite via 

AllocateScatterGatherList().  It calls IoMapTransfer() to setup map registers for the 

SCSI disk’s adapter object to map a DMA transfer from the disk to system memory via the locked-down 

buffer in the MDL. 

 

Thus, to use the crash dump stack for SCSI drives, it is a simple matter of crafting an SRB, creating an 

MDL for it at the appropriate offset, and sending the SRB directly to StartIo.  The format of an SRB 

(documented structure) is shown below. 

 

typedef struct _SCSI_REQUEST_BLOCK {  

  USHORT  Length;  

  UCHAR  Function;  

  UCHAR  SrbStatus;  

  UCHAR  ScsiStatus;  

  UCHAR  PathId;  

  UCHAR  TargetId;  

  UCHAR  Lun;  

  UCHAR  QueueTag;  

  UCHAR  QueueAction;  

  UCHAR  CdbLength;  

  UCHAR  SenseInfoBufferLength;  

  ULONG  SrbFlags;  

  ULONG  DataTransferLength;  

  ULONG  TimeOutValue;  

  PVOID  DataBuffer;  

  PVOID  SenseInfoBuffer;  

  struct _SCSI_REQUEST_BLOCK  *NextSrb;  

  PVOID  OriginalRequest;  

  PVOID  SrbExtension;  

  union { 

ULONG  InternalStatus; 

ULONG  QueueSortKey; 

  };  

  UCHAR  Cdb[16];  

} SCSI_REQUEST_BLOCK, *PSCSI_REQUEST_BLOCK; 

 
Figure 14:  The SCSI_REQUEST_BLOCK structure 

The highlighted fields will need to be populated before sending the request: 

 Length - the size of the SRB structure 

 Function – the value SRB_FUNCTION_EXECUTE_SCSI which directs the device to 

execute a SCSI-2 compliant command descriptor block 
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 PathId, TargetId, Lun – the corresponding values stored in a SCSI_ADDRESS structure 

which describe the path to the boot device 

 CdbLength – the number of bytes in the attached Cdb command 

 SrbFlags – Flags that describe the type of requested operation 

 DataTransferLength – the number of bytes to be read from or written to disk 

 TimeOutValue – time in seconds for the operation to timeout 

 DataBuffer – pointer to system space memory where the device will copy to or read from 

 Cdb – the SCSI-2 compliant command descriptor block (CDB) which describes the SCSI operation 

the device will carry out 

The CDB field describes the requested SCSI operation, and the values stored there will vary based on the 

type of operation.  For example, to read the boot sector (bytes 0 through 512 in first sector), a 10-byte 

command could be used in order to support 32-bit logical block address (LBA).  In such an example, the 

SRB.CdbLength field would be set to 10 and the CDB structure would be filled out as shown in the 

illustration below.  The complete SCSI-2 specification is available on the internet at various sources 

including [4]. 

 
 

Srb.Cdb[0] = SCSIOP_READ;               //operation 

Srb.Cdb[1] = 0;     //LUN-DPO-FUA-Reserved-RelAddr 

Srb.Cdb[2] = 0;     //LBA (MSB) 

Srb.Cdb[3] = 0;     //.. 

Srb.Cdb[4] = 0;     //.. 

Srb.Cdb[5] = 0;     //LBA (LSB) 

Srb.Cdb[6] = 0;     //reserved 

Srb.Cdb[7] = 0;     //MSB transfer length (# blocks, 1 block = 512 bytes) 

Srb.Cdb[8] = 1;     //LSB transfer length 

Srb.Cdb[9] = 0;     //control byte 

 
Figure 15:  SRB to read the MBR 

Now that the SRB has been built, it is a simple matter of passing it to StartIo.  Once the request is 

completed, the result will be stored in the DataBuffer field of the SRB. 

For the IDE dump port driver (dumpata.sys), the device extension is of a format similar to an IDE 

channel extension structure.  It is allocated in the IdeDumpPortInitialize routine, which is called 

from the dump port driver’s DriverEntry.  The device extension structure (CRB) is stored in the 

DUMP_INITIALIZATION_CONTEXT structure passed to it by the crashdmp.sys driver.  In the 

disassembly below, the device extension of size 0x8000 is stored in the MemoryBlock field of the 

DUMP_INITIALIZATION_CONTEXT structure. 
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Figure 16:  IdeDumpPortInitialize() stores the dump extension in the MemoryBlock field 

 

When the DiskDumpWrite callback is called, it calls IdeDumpWritePending(), whose 

disassembly is shown below. 

 

 
Figure 17:  IdeDumpWritePending() initializes the controller extension 

 

IdeDumpWritePending() sets up a write IRB in the CRB as follows: 

 Initializes a CRB at offset 0x120 (0x1C0 for x64) in the device extension (CRB) 

 Calls IdeDumpSetupWriteCrb()  which initializes a write IDE_REQUEST_BLOCK and calls 

IdeDumpAddMdlToCrb() to save the MDL passed to the DiskDumpWrite callback at 

offset 0x50 (0x88 for x64) 

 Calls DispatchCrb() to complete the I/O write request 
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 Waits for the request to complete by calling IdeDumpWaitOnRequest(), which uses 

hardware polling to query the drive until it has either successfully completed the request or 

returned an error code 

DispatchCrb() fills in the remaining fields of the IRB, performs the register mapping and sends the 

request to the miniport driver.   

 
Figure 18:  DispatchCrb() completes initialization and transmits I/O to the miniport 

 

As shown in the function disassembly above, IdeDumpAllocateScatterGatherList() is called.  

This function performs the same task as the AllocateScatterGatherList() function in the SCSI 

dump port driver.  IdeDumpMapBuffers() locks the buffers into system space, then the request is 

sent to the miniport driver via the miniport’s StartIo() function (in this case, the dump_atapi 

dump miniport’s AtapiHwStartIo()).  The DispatchCrb() function finally calls 

IdeDumpCompletionDpc() which calls a completion function stored at offset 0x4 in the CRB. 

 

A simpler example of instantiating an IRB and using DispatchCrb() inside the dump port driver can 

be found in IdeDumpIssueIdentify(), shown below.  This function is used to issue an ATA 

identify request to retrieve meta information about an IDE drive, such as channel, drive number, serial 

number, etc. 
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IdeDumpIssueIdentify() provides a good template for using the crash dump stack for IDE drives.  

The process can be summarized as follows: 

 Allocate a CRB in DUMP_INITIALIZATION_CONTEXT.MemoryBlock at the correct offset 

(0x120 for x86, 0x1C0 for x64) 

 Store a pointer to a callback function in the CRB at offset 0x4, which will be invoked when the 

dump port driver is notified that the I/O request is complete 

 Allocate and fill in an IRB at offset 0x288 (0x3E8 for x64) in the CRB 

 Allocate an MDL at offset 0x50 (0x88 for x64) in the CRB 

 Send the CRB to DispatchCrb() 

 Call a custom function that implements a polling mechanism to wait for the request to 

complete, or call the internal IdeDumpWaitOnRequest() function 

There is a second method for using the crash dump stack on IDE drives without interacting with the port 

driver at all: 

 Allocate a CRB in DUMP_INITIALIZATION_CONTEXT.MemoryBlock at the correct offset 

(0x120 for x86, 0x1C0 for x64) 

 Store a pointer to a callback function in the CRB at offset 0x4, which will be invoked when the 

dump port driver is notified that the I/O request is complete 

 Allocate and fill in an IRB at offset 0x288 (0x3E8 for x64) in the CRB 

 Call the miniport’s HwStartIo routine, which is stored at offset 0x2E in the device extension,  

passing the device extension and the IRB 

 Poll the device until the IRB status changes from zero by calling the miniport’s HwInterrupt 

routine which is stored at offset 0x2F in the device extension, passing the device extension only 

The IDE request block is a documented format available at [8].  Most of the fields are comparable to the 

format of the SRB with the following key exceptions which are evident in the disassembly above: 
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 The Function field should be set to IRB_FUNCTION_ATA_COMMAND 

 The Channel field should be set to the value stored in the channel extension’s Channel field 

which is at offset 0x8A (0xEA for x64) from the start of the 

DUMP_INITIALIZATION_CONTEXT.MemoryBlock structure 

 The TargetId field should be set to the value stored in the channel extension’s TargetId 

field which is at offset 0x45D (0x6A9 for x64) from the start of the 

DUMP_INITIALIZATION_CONTEXT.MemoryBlock structure 

 The Lun field should be set to the value stored in the channel extension’s Lun field which is at 

offset 0x45E (0x6AA for x64) from the start of the 

DUMP_INITIALIZATION_CONTEXT.MemoryBlock structure 

 

Subverting the TDL4 Bootkit 
The TDL4 bootkit contaminates the normal I/O path by overwriting pointers in the device object of the 

port and miniport drivers with pointers to its own I/O filtering functions.  These functions watch for 

requests to read the master boot record (located at sector 0) and return a copy of the clean MBR which 

it keeps in a secret place on disk.  The purpose of this misdirection is to fool the investigator into 

believing the system is not infected, since a normal MBR is returned.  The screenshot below shows the 

clean MBR as read by Sleuth Kit on an uninfected and an infected machine (as noted above, they should 

match). 
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Figure 19:  The clean copy of the MBR as returned by TDL4 

The proof-of-concept driver implementing the technique discussed in this paper for SCSI is loaded and 

the MBR is read.  The output of the driver is shown below. 

 

kape: IRP_MJ_DEVICE_CONTROL. Control Code 70ff801c 

kape:  GetMBR():  Found dump driver entry points: 

    dump_scsiport.sys:  f8150b85 

    dump_vmscsi.sys:  f814bbbe 

kape:  GetMBR():  Boot device:  LUN=0, TargetId=0, PathId=0, Port=2 

kape:  GetMBR():  Boot device object at 82309598 

kape:  GetMBR():  Contacting disk driver to get dump pointers... 

kape:  GetMBR():  Sending device usage notification request... 

kape:  GetMBR():  Allocating required buffers... 

kape:  GetMBR():  Calling dump port and miniport driver entry points...success! 

kape:  FindDriverStartIoAddress():  Text section at f814e300 (size 8102) . 

kape:  GetMBR():  DriverStartIo found at address f814e648. 

kape:  GetMBR(): Located dump port DeviceExtension pointer at 81d44010! 

kape:  GetMBR(): Storing pointer to an allocated MDL at DeviceExtension address 81d440e0! 

kape:  GetMBR(): Sending SRB...status: 

     Srb.SrbStatus = 00000000 

     Srb.ScsiStatus = 00000000 

     Srb.InternalStatus = 00000000 

kape:  Srb.DataBuffer: 

33c08ed0bc007cfb5007501ffcbe1b7cbf1b065057b9e501f3a4cbbdbe07b104386e007c09751383c510e2f4cd188bf58

3c610497419382c74f6a0b507b4078bf0ac3c0074fcbb0700b40ecd10ebf2884e10e84600732afe4610807e040b740b80
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7e040c7405a0b60775d2804602068346080683560a00e821007305a0b607ebbc813efe7d55aa740b807e100074c8a0b70

7eba98bfc1e578bf5cbbf05008a5600b408cd1372238ac1243f988ade8afc43f7e38bd186d6b106d2ee42f7e239560a77

237205394608731cb80102bb007c8b4e028b5600cd1373514f744e32e48a5600cd13ebe48a560060bbaa55b441cd13723

681fb55aa7530f6c101742b61606a006a00ff760aff76086a0068007c6a016a10b4428bf4cd136161730e4f740b32e48a

5600cd13ebd661f9c3496e76616c696420706172746974696f6e207461626c65004572726f72206c6f6164696e67206f7

065726174696e672073797374656d004d697373696e67206f7065726174696e672073797374656d000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

02c4463540c540c00008001010007feffff3f00000011acff030000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000055aa 

kape: OnStubDispatch 

kape: OnStubDispatch 

 
Figure 20:  Output from Proof-of-Concept utility to retrieve hidden MBR 

A view of this MBR in a hex editor is shown below.  Visual inspection reveals numerous differences in 

this MBR and the previous one. 

 
Figure 21:  Contaminated TDL boot record hidden by rootkit 

Disassembling this 16-bit boot sector code reveals a short decryption (rol/xor) routine typical of the 

TDL family.  Thus, the concealed, infected MBR has been revealed by using the crash dump I/O path.  

Caveats and Further Work 
The technique described in this paper has been verified to work for SCSI transports (scsiport.sys and 

storport.sys) on x86 versions of Windows XP and 7.  The strategies for IDE drives (ataport.sys) were 
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verified in so far as leveraging the crash dump stack to send an IRB to the device.  The first technique of 

using DispatchCrb successfully transmitted an IRB to the device, but the result buffer was filled with 

garbage instead of the requested data.  The second technique of using the miniport directly returned all 

zeroes in the result buffer and an unknown ATA status with IRB data length mismatch error.  It is likely 

that either the IDE_TASK_FILE component of the IRB was improperly constructed or a required data 

length value is missing from the CRB or dump extension structure.  64-bit operating systems were not 

tested due to time constraints, but this is a simple exercise in validating the offset adjustments are 

correct. 

Some storage driver professionals have mentioned on various online forums that attempting to call a 

driver’s StartIo directly, rather than going through the I/O manager, could violate design principles of 

the target driver, resulting in system deadlocks [9].  Even though the design constraints of the crash 

dump environment (synchronous I/O, single-threaded, single processor) allow for such a violation, 

activating and using the crash dump mechanism during normal system operation could theoretically 

result in undefined behavior. 
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Resources and Further Reading 
The Windows Research Kernel (WRK) and various operating system source code repositories on the 

internet (such as ReactOs) might provide useful information for reversing the crash dump mechanism: 

 sysload.c – loader functions such as MmLoadSystemImage 

 dumpctl.c – crash dump control functions 

 io.h – I/O header defs 

 hal.h – useful macros, header defs 

 internal.c – driver object creation and dynamic loading 

 ioinit.c, iodata.c 

The WRK can be downloaded at 

https://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=7366&c1=en-

us&c2=0&Login=&wa=wsignin1.0 
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Other sources of potential value: 

 ReactOs:   

o scsiport.c, scsiport.h – SCSIPort implementation 

 Win DDK: 

o wdm.h 

o ntddscsi.h 

o SPTI example for sending SRBs from user mode (spti.h, spti.c) 

o storport.h 

o ata.h, irb.h 

 classpnp example for sending SRBs from a driver 

Additionally, Microsoft has published numerous guides for storage manufacturers on best practices for 

writing ATAPort, SCSIPort and StorPort miniport drivers.  These documents contain low-level tips and 

gotchas straight from the kernel driver developers at Microsoft and provide invaluable insight. 


