

Subverting Bootkits using the Crash Dump
Driver Stack

Aaron LeMasters

3/15/2012

© Copyright 2012 Mandiant Page 1

Contents
Technical Overview ... 2

The Crash Dump Mechanism In-Depth ... 7

Overview of the Crash Dump Driver Stack .. 7

Crash Dump Stack Initialization Prior to Windows Vista .. 9

Crash Dump Stack Initialization in Windows Vista and Later ... 11

Initialization of Drivers in the Crash Dump Driver Stack ... 12

Crash Dump Stack Usage Prior to Windows Vista .. 14

Crash Dump Stack Usage in Windows Vista and Later ... 16

Leveraging the Crash Dump Stack .. 17

Identify Crash Dump Port and Miniport Drivers ... 17

Get Boot Device Information .. 18

Find the Dump Port Driver’s StartIo or DispatchCrb Routine ... 19

Find the Dump Port Driver’s Device Extension ... 20

Instantiate and Transmit SCSI/IDE Request Block .. 22

Subverting the TDL4 Bootkit ... 28

Caveats and Further Work .. 30

References .. 31

Resources and Further Reading .. 31

© Copyright 2012 Mandiant Page 2

Technical Overview
An operating system provides facilities that allow applications to carry out tasks without having to worry

about details of underlying hardware. For example, when an application saves a file to disk, it is able to

carry out that task without knowledge of the underlying disk geometry or transport protocol, because

the operating system implements and controls the mechanisms for converting the high-level application

request into a low-level hardware command. Applications rely heavily on the operating system for

accessing low-level hardware resources, and computer forensic tools, for the most part, are no

exception. Even popular disk forensic tools such as The Sleuth Kit [1], which provides raw disk access for

manually extracting data from popular file system formats, still rely on various drivers provided by the

operating system to access the data on disk. The operating system in turn relies on the hardware to

operate correctly and conform to certain standards and rules. This trust relationship is a fundamental

design principle of the Windows Driver Framework and is exhibited in all driver and device stacks in the

operating system. Figure 1 illustrates the chain of trust for the mass storage device stack or “Normal I/O

Path”.

© Copyright 2012 Mandiant Page 3

Figure 1: Mass storage device stack or "Normal I/O Path"

In this trust chain, an I/O request initiates in the user space layer and travels a long winding path

through the normal I/O path, until it eventually reaches the physical disk in the hardware layer. Each

driver in the chain performs its intended function and passes the request down to the next driver – all

coordinated by the operating system I/O subsystem. The Host Bus Adapter (HBA), firmware on the

physical disk, and miniport driver work together to complete the request and pass it back up the driver

chain to the user.

© Copyright 2012 Mandiant Page 4

Rootkits operate in the kernel space layer and install themselves into one or more of the components in

this normal I/O path in order to manipulate disk contents (e.g., to hide files). Once the normal I/O path

is contaminated in this manner, it becomes useless to any driver or application above it, since it is

returning altered data. This includes forensic tools that might be relying on the normal I/O path to

search for evidence on a hard drive. Contaminated evidence can cause an active investigation to be

misled and is typically not admissible in court.

Numerous solutions have been proposed to this contamination problem over the past 20 years. Anti-

virus and HIPS vendors attempt to uninstall the rootkits dynamically or put measures in place to prevent

them from installing at all. This approach becomes a classic cat-and-mouse game, as rootkit authors

simply install at some other junction in the normal I/O path or subvert the prevention measure itself.

Additionally, it is often the case that “whoever is there first” wins this battle, since all software that

operates at the kernel space layer has equal privileges. Microsoft itself has put measures in place to

protect critical components in trust chains such as the normal I/O path, but rootkit authors outsmart

these measures and manage to infect systems.

Since the battle for disk control is raging in the normal I/O path, this paper introduces a novel technique

to control the hard disk through a completely different I/O path: what is referred to as the crash dump

I/O path. The crash dump I/O path, illustrated in Figure 2, is completely separate from the normal I/O

path and is largely hidden and undocumented by Microsoft. It is used by the operating system when the

system becomes unstable (e.g., Blue Screen of Death) to save critical debugging information to disk

(inside what is called a crash dump file). This process is known as the crash dump process.

© Copyright 2012 Mandiant Page 5

Figure 2: The Crash Dump I/O Path

Aside from missing most of the components in the normal I/O path, the major difference in the crash

dump I/O path is that it uses a special copy of the port and miniport drivers. When a system crash

occurs, since the operating system cannot guarantee the critical fault did not occur in one of the drivers

in the normal I/O path, it uses a separate copy of the port and miniport driver for the boot device to

write to the disk.

The port driver is an abstraction interface provided by Microsoft that allows higher-level drivers to

communicate with the disk without bothering with protocol-specific details. It communicates with a

manufacturer-provided miniport driver beside it, which implements a hardware-specific interface to the

Host Bus Adapter of the physical disk.

When the crash dump process is initiated, the normal I/O path is disabled. The operating system

activates the special dump port and miniport drivers and writes the crash dump file to disk using special

functions provided by the dump port driver. These functions restrict the operating system to only open,

write and close a dump file.

© Copyright 2012 Mandiant Page 6

Using a special technique, illustrated in Figure 3, it is possible to gain access to the crash dump I/O path

and read or write to disk without bothering with the normal I/O path. The approach is similar to the

crash dump process briefly described above. However, rather than using the provided dump port

functions, which only allow control of the crash dump file in limited ways, the technique involves using

the dump port driver’s hidden StartIo or DispatchCrb functions to send read or write requests

directly to the hardware, without any restrictions. Since these crash dump drivers are part of a

mechanism supported by Microsoft, this technique is for the most part portable to all versions of

Windows. It is also applicable to multiple transport protocols such as IDE and RAID.

Figure 3: Modified use of the Crash Dump I/O Path

Since these dump drivers are not initialized like normal drivers and are not part of the normal I/O path,

it is extremely difficult for rootkits to hook them in classic ways (and doing so might make the system

unusable, which rootkit authors would not want). At the time of this writing, there are no known

rootkits in the wild that infect the crash dump I/O path. The author speculates this is partially because

of the technical challenges and because of the possibility of destabilizing the system if the crash dump

I/O path is corrupted. In other words, infecting the crash dump I/O path is a risky proposition for rootkit

© Copyright 2012 Mandiant Page 7

authors, so they are likely to avoid contaminating it. This fact makes it a desirable method for collecting

forensic evidence.

This paper will illustrate how this technique can be used to subvert one of the lowest-level I/O hooking

rootkits in the wild: Master Boot Record (MBR) rootkits (or simply bootkits). Bootkits have existed for

decades but are more recently gaining widespread attention with the growing deployment of nasty

bootkits such as TDL4 and Popureb. The most advanced versions of these rootkits hook the normal I/O

path at the lowest possible level: the port and miniport drivers. It infects these drivers, replaces the

MBR with an infected one, and fools forensic tools into thinking the system is not infected by returning a

clean copy of the MBR. Since this technique leverages the crash dump I/O path, it is possible to reveal

the true, infected MBR.

The following section covers in greater detail the crash dump process itself, from Windows 2000 up to

Windows 7, and how the crash dump I/O path can be used to control the disk.

The Crash Dump Mechanism In-Depth
On system boot-up, the kernel initializes a number of critical system components, one of which the

crash dump mechanism, which is used to save debugging information to disk when the system

encounters an unrecoverable condition (a.k.a, crash, blue screen, or bugcheck). The crash dump

mechanism consists of the crash dump driver stack and various global kernel data structures that

maintain state information.

Overview of the Crash Dump Driver Stack

The crash dump driver stack is used to write a crash dump file to disk when the system crashes. The

Windows kernel decides what disk drivers are required given the hardware attributes of the boot device

(such as transport protocol) and loads/maps them into memory. The crash dump stack consists of the

following drivers:

1. A dump port driver – an abstraction interface provided by the operating system; implements a

specific transport protocol (such as SCSI or IDE); the operating system provides three such port

drivers: scsiport.sys (SCSI), ataport.sys (ATA/IDE), and storport.sys (optimized

for RAID)

2. A dump miniport driver – a hardware-specific driver provided by the vendor which translates

generic operating system commands into vendor-specific commands

3. One or more crash dump filter drivers – these are typically third-party drivers that need to

perform some pre or post processing of the crash dump file data, such as whole-disk encryption

drivers that wish to encrypt the crash dump file itself.

There will always be only one dump port driver and one dump miniport driver. Table 1 below describes

some of the drivers that can be found in the crash dump stack.

Driver Name On Disk Driver Base Name in Memory Purpose

diskdump.sys dump_diskdump SCSI/Storport dump port driver
with required exports from

© Copyright 2012 Mandiant Page 8

scsiport.sys and storport.sys.
This driver is unloaded.

dumpata.sys dump_dumpata IDE/ATA dump port driver with
required ataport.sys exports.
This driver is unloaded.

scsiport.sys dump_scsiport The final SCSI/Storport dump
port driver.

ataport.sys dump_ataport The final IDE/ATA dump port
driver.

atapi.sys dump_atapi An older, generic ATAPI miniport
driver provided by the OS for
IDE/ATA drives

vmscsi.sys dump_vmscsi The miniport driver provided by
VMWare for SCSI drives.

LSI_SAS.sys dump_LSI_SAS The miniport driver provided by
LSI Corporation for serial-
attached storage drives.

dumpfve.sys dump_dumpfve Windows full volume encryption
crash dump filter driver

Table 1: Common crash dump stack drivers

The crash dump stack is initialized and configured when a page file is created on any fixed disk, which

occurs:

 At system boot up during kernel phase 1 initialization

 When NtCreatePagingFile() is called

The crash dump stack is used when:

 A bug check occurs

 The system is about to hibernate

The crash dump stack must be initialized before a crash dump file can be written to a paging file.

Storage for a crash dump file is allocated and initialized for the first paging file on a fixed disk drive. The

first time this happens is during phase 1 initialization of system boot up, just after the boot device has

been initialized. The kernel reads the name of the boot device’s page file(s) from the registry key

HKLM\System\CurrentControlSet\Control\Session Manager\Memory

Management\ExistingPageFiles. Normally the page file stored at this location is

C:\pagefile.sys, but it can be any drive and up to 16 page files. The crash dump storage space

will be allocated for the first paging file, and the crash dump stack is initialized.

The crash dump stack is initialized and used differently based on operating system version. On operating

systems prior to Windows Vista, the kernel performs all of the crash dump stack initialization and dump

file creation. For Vista and later operating systems, the majority of this code (along with new features)

was moved to a new driver, crashdmp.sys. Furthermore, whereas the older kernel exported type

information for many of the (partially documented) critical crash dump data structures, the

© Copyright 2012 Mandiant Page 9

crashdmp.sys driver introduced a host of new data structures that are neither documented nor

exported.

There are several principles governing the use of the crash dump stack in all versions of Windows:

1. All processors are disabled except the one the current thread is executing on

2. The active CPU becomes single-threaded (IRQL is raised to HIGH_LEVEL) and uninterruptible

3. I/O sent to the crash dump stack is sent one request at a time

4. If IDE controller, only the channel containing the device with the page file is enabled.

Crash Dump Stack Initialization Prior to Windows Vista

In older operating systems, the crash dump stack and all its critical components were contained in a

global variable named IopDumpControlBlock. This variable is of an undocumented but exported

type DUMP_CONTROL_BLOCK and contains information about basic system properties, crash dump

settings from the registry, and meta-information about the crash dump file itself.

typedef struct _DUMP_CONTROL_BLOCK {

 UCHAR Type;

 CHAR Flags;

 USHORT Size;

 CCHAR NumberProcessors;

 CHAR Reserved;

 USHORT ProcessorArchitecture;

 PDUMP_STACK_CONTEXT DumpStack;

 PPHYSICAL_MEMORY_DESCRIPTOR MemoryDescriptor;

 ULONG MemoryDescriptorLength;

 PLARGE_INTEGER FileDescriptorArray;

 ULONG FileDescriptorSize;

 PULONG HeaderPage;

 PFN_NUMBER HeaderPfn;

 ULONG MajorVersion;

 ULONG MinorVersion;

 ULONG BuildNumber;

 CHAR VersionUser[32];

 ULONG HeaderSize;

 LARGE_INTEGER DumpFileSize;

 ULONG TriageDumpFlags;

 PUCHAR TriageDumpBuffer;

 ULONG TriageDumpBufferSize;

}DUMP_CONTROL_BLOCK, *PDUMP_CONTROL_BLOCK;

Figure 4: The DUMP_CONTROL_BLOCK structure

The most important field is DumpStack, which is an undocumented (but exported) structure of type

DUMP_STACK_CONTEXT shown below. This structure is a container for information about the crash

dump drivers and associated configuration.

typedef struct _DUMP_STACK_CONTEXT {

 DUMP_INITIALIZATION_CONTEXT Init;

 LARGE_INTEGER PartitionOffset;

 PVOID DumpPointers;

 ULONG PointersLength;

 PWCHAR ModulePrefix;

 LIST_ENTRY DriverList;

 ANSI_STRING InitMsg;

© Copyright 2012 Mandiant Page 10

 ANSI_STRING ProgMsg;

 ANSI_STRING DoneMsg;

 PVOID FileObject;

 enum _DEVICE_USAGE_NOTIFICATION_TYPE UsageType;

} DUMP_STACK_CONTEXT, *PDUMP_STACK_CONTEXT;

Figure 5: The DUMP_STACK_CONTEXT structure

The DumpPointers field contains hardware-specific information about the disk drive (obtained

through a call to the disk driver via IOCTL_SCSI_GET_DUMP_POINTERS) which is used during write

I/O operations to the crash dump file. The DriverList field contains a linked list of data structures

that describe the driver image of each driver in the crash dump stack (such as crash dump filter drivers).

This field will be used at actual crash dump time to initialize each driver. The Init field of type

DUMP_INITIALIZATION_CONTEXT (undocumented but exported), shown below, is only partially

filled in during this phase of initialization. The highlighted fields below are filled in later by the crash

dump port driver at the time a crash dump is initiated. These fields are pointers to functions exported

by the dump port driver which provide the kernel the ability to write the crash dump data to the crash

dump file.

typedef struct _DUMP_INITIALIZATION_CONTEXT {

 ULONG Length;

 ULONG Reserved;

 PVOID MemoryBlock;

 PVOID CommonBuffer[2];

 PHYSICAL_ADDRESS PhysicalAddress[2];

 PSTALL_ROUTINE StallRoutine;

 PDUMP_DRIVER_OPEN OpenRoutine;

 PDUMP_DRIVER_WRITE WriteRoutine;

 PDUMP_DRIVER_FINISH FinishRoutine;

 struct _ADAPTER_OBJECT *AdapterObject;

 PVOID MappedRegisterBase;

 PVOID PortConfiguration;

 BOOLEAN CrashDump;

 ULONG MaximumTransferSize;

 ULONG CommonBufferSize;

 PVOID TargetAddress;

 PDUMP_DRIVER_WRITE_PENDING WritePendingRoutine;

 ULONG PartitionStyle;

 union {

 struct {

 ULONG Signature;

 ULONG CheckSum;

 } Mbr;

 struct {

 GUID DiskId;

 } Gpt;

 } DiskInfo;

} DUMP_INITIALIZATION_CONTEXT, *PDUMP_INITIALIZATION_CONTEXT;

Figure 6: The DUMP_INITIALIZATION_CONTEXT structure

The call chain outline below summarizes what kernel functions are responsible for initializing the crash

dump stack in operating systems prior to Windows Vista.

 KiInitializeKernel() -> IoInitSystem() OR NtCreatePagingFile():

o IoInitializeCrashDump()

© Copyright 2012 Mandiant Page 11

 IopInitializeDCB() – read dump settings from registry, allocate memory for

global IopDumpControlBlock

 IoGetDumpStack()->IopGetDumpStack() – Fills DumpStack and

DumpInit substructures of global IopDumpControlBlock with boot device

type, geometry, and dump retrieval pointers; responsible for locating the port and

miniport drivers and mapping them into memory with the “dump_” prefix using

nt!IopLoadDumpDriver()

 IopCompleteDumpInitialization() – sets dump range limits and

calculates IopDumpControlBlock checksum

Crash Dump Stack Initialization in Windows Vista and Later

On Windows Vista and later operating systems, most of the crash dump stack initialization code was

moved from the kernel and integrated with additional features into a driver,

%SYSTEM32%\Drivers\crashdmp.sys. The kernel’s IoInitializeCrashDump simply loads

this crash dump driver into memory and calls its entry point with two arguments: the name of the “arc”

boot device and a pointer to a global crash dump callback table. The crash dump driver’s entry point

loads the callback table with pointers to callback functions for the kernel to use, as shown in Table 2

below.

Table Offset Value

0x0 1
0x4 1
0x8 CrashdmpInitialize

0xC CrashdmpLoadDumpStack

0x10 CrashdmpInitDumpStack

0x14 CrashdmpFreeDumpStack

0x18 CrashdmpDisable

0x1C CrashdmpNotify

0x20 CrashdmpWrite

0x24 CrashdmpUpdatePhysicalRange

Table 2: The crashdmp call table

After the entry point of crashdmp.sys fills the callback table, IoInitializeCrashDump calls the

third entry in the table, which is always a pointer to CrashDmpInitialize. This function takes two

arguments: a handle to the paging file and a pointer to a kernel-global dump block variable (referred to

as DumpBlock) of an undocumented and unexported type. DumpBlock is where crash dump

information will be stored when the system crashes. Aside from a single field in the structure,

CrashDmpInitialize does not modify this dump block variable. Instead, it initializes various

internal dump control structures that take the place of the global kernel dump control block

IopDumpControlBlock used in prior operating system versions (such as the sub-structures

DumpInit and DumpStack).

The call chain outline below summarizes the functions involved in initializing the crash dump stack in

Vista and later operating systems.

© Copyright 2012 Mandiant Page 12

 KiInitializeKernel() -> IoInitSystem() OR NtCreatePagingFile():

o IoInitializeCrashDump()

 IopLoadCrashDumpDriver() – loads crashdmp.sys into memory and calls

its entry point, passing the arc name of the boot device and a pointer to crash dump

call table

 Crashdmp!DriverEntry() – fills crash dump call table

 Crashdmp!CrashDmpInitialize() – reads registry settings, initializes an

internal DumpBlock and populates the crash dump driver stack (port, miniport and

filter drivers) as follows:

 Crashdmp!CrashdmpLoadDumpStack() – queries the boot device

and then calls the following functions:

o Crashdump!QueryPortDriver() – sends various IOCTLs to

the port driver to collect partition information, disk geometry, and

SCSI dump pointers.

o Crashdmp!LoadPortDriver() – responsible for locating the

port and miniport drivers and mapping them into memory with the

“dump_” prefix. See comments in the next paragraph for details.

o Crashdmp!LoadFilterDrivers() – loads crash dump filter

drivers stored in the registry at

HKLM\CurrentControlSet\Control\CrashControl\Du

mpFilters, also prefixed with “dump_”

o Crashdmp!InitializeFilterDrivers() – calls the entry

point of all crash dump filter drivers

Crashdmp!LoadPortDriver() is responsible for an important step in the crash dump stack

initialization process – loading the correct port and miniport drivers. It calls

Crashdmp!GetLegacyPortDriverName() which uses the following strategy to locate the name

of the port driver. It calls GetPortDriverName(), which calls GetPortDriverObject() to get

a handle to the port driver object represented by calling

ZwOpenFile()/ObReferenceObjectByHandle() on the named object

\\Device\ScsiPort<x> where “x” is the port number of the SCSI boot device. The driver object

contains a pointer to the driver path and image name. For non-SCSI devices, a driver object was already

obtained, so GetPortDriverObject() is not called. It also loads the miniport driver associated

with this boot device in the same manner.

Initialization of Drivers in the Crash Dump Driver Stack

In the preceding sections concerning dump stack initialization, nt!IopGetDumpStack (prior to Vista)

and crashdmp!CrashDmpInitialize (Vista and later) were responsible for loading a series of

drivers into the crash dump stack. These drivers include a port driver, a miniport driver, and one or

more crash dump filter drivers. All of these drivers are re-named with a prefix of “dump_” when they

are mapped into memory.

© Copyright 2012 Mandiant Page 13

The port driver in the crash dump stack is actually a modified version of the original OS-provided port

driver. For ATA transport protocols, the dump port driver is named on disk as dumpata.sys. For SCSI

transports (as well Storport, Microsoft’s optimized version of scsiport), the dump port driver is named

on disk as diskdump.sys. The miniport driver in the crash dump stack is a copy of the manufacturer-

provided miniport driver for the boot device. After locating the appropriate miniport and port drivers

(e.g., if the boot device is using SCSI transport protocol, the dump port driver will be diskdump.sys),

the kernel (or crashdmp.sys) maps a copy of these drivers into memory, so that they are

permanently resident and available when a system crash occurs. To insure the copies of the port and

miniport drivers used for the crash dump stack do not conflict with the normal I/O path, the copies are

prefixed with the string “dump_” (e.g., “dump_scsiport”, “dump_storport” or “dump_ataport”). This

mapping is also done for the miniport driver (eg, “dump_vmscsi” for vmscsi.sys, a SCSI miniport

driver provided by VMWare) and all of the crash dump filter drivers (e.g., “dump_dumpfve” for

dumpfve.sys, a Microsoft-provided full volume encryption driver). One exception to this naming

convention is on systems where the miniport driver is linked against the storport port driver, the

operating system will create a “hybrid” dump port driver named “dump_diskdump.sys”. This dump port

driver contains both scsiport and storport exports, since the storport protocol is based on SCSI.

It is worth noting that the operating system does not initialize typical driver management structures

such as DRIVER_OBJECT and DEVICE_OBJECT for the crash dump drivers. As a result, these often-

hooked management structures are not available for rootkits to tamper with.

There are some important differences between the dump port driver in the Crash Dump I/O path and

the port driver in the Normal I/O path that allow the dump port driver to operate without normal

operating system components. The dump port driver keeps all of the exported functions that the

miniport driver needs but differs from the standard port driver in the following crucial ways:

1. Most internal functions not necessary for dump file creation and writing are stripped

2. Three new exported functions are provided to the kernel for crash dump file generation –

DiskDumpOpen, DiskDumpWrite, DiskDumpFinish

3. For SCSI drives, an internal function called StartIo is used to transmit a single SCSI request

block to the dump miniport driver for completion; for IDE drives, an IDE request block is sent via

the internal function DispatchCrb

Similarly, the dump miniport driver must be modified by the kernel to operate in the crash dump stack.

When a vendor provides a miniport driver to operate its hardware, the driver is linked against the

appropriate port driver. The operating system must “rebind” the dump miniport driver to the dump

port driver. This is necessary because the original miniport driver is linked against the original port

driver. Without this rebinding, the dump miniport driver would attempt to communicate with the

original port driver.

© Copyright 2012 Mandiant Page 14

With the changes noted above and by forcing the dump miniport driver to use the dump port driver, the

operating system has essentially circumvented the normal I/O path. Furthermore, Microsoft requires

that manufacturer-supplied miniport drivers operate in “dump mode” [2]:

A storage miniport driver that manages an adapter for a boot device is subject to special restrictions during

a system crash. While dumping the system's memory image to disk, the miniport driver must operate within

a different environment. The usual communication between the miniport driver, the port driver, and disk

class driver is interrupted. The kernel does disk I/O by direct calls to the disk dump port driver

(diskdump.sys for SCSI adapters or dumpata.sys for ATA controllers), bypassing file systems, and the normal

I/O stack. The disk dump driver, in turn, calls the boot device's miniport driver to handle all I/O operations,

and the disk dump driver intercepts all of the miniport driver's calls to the port driver.

In other words, the miniport driver must be able to cope with this special crash dump mode. This is

important, because it implies that the crash dump I/O path, something the technique in this paper relies

on, is guaranteed to be supported regardless of hard drive type or manufacturer. According to MSDN,

the miniport driver is instructed to operate in dump mode when the OS calls its DriverEntry with

null parameters instead of the normal DriverEntry parameters.

Crash Dump Stack Usage Prior to Windows Vista

If the system crashes, and it has been configured to write a crash dump, the kernel uses the already-

initialized crash dump stack to write the crash dump file to the paging file on disk.

When the system encounters a crash, the kernel function KeBugCheck2() is called, which in turn

calls IoWriteCrashDump(). This function verifies the checksum of IopDumpControlBlock

(the global variable that contains information about the crash dump stack) and calls

IoInitializeDumpStack(), which walks the list of crash dump drivers stored in the

DriverList field of the DUMP_STACK_CONTEXT structure as mentioned in the crash dump driver

initialization section. For each driver in the dump stack, its DriverInit (DriverEntry) routine is

called. The first driver in the dump stack (always the dump port driver) gets the

DUMP_INITIALIZATION_CONTEXT structure (shown below) stored in the

DUMP_STACK_CONTEXT passed to its DriverEntry as the second argument. This driver populates

the initialization structure below with functions that will be used by the kernel to do disk I/O,

highlighted below.

typedef struct _DUMP_INITIALIZATION_CONTEXT {

 ULONG Length;

 ULONG Reserved;

 PVOID MemoryBlock;

 PVOID CommonBuffer[2];

 PHYSICAL_ADDRESS PhysicalAddress[2];

 PSTALL_ROUTINE StallRoutine;

 PDUMP_DRIVER_OPEN OpenRoutine;

 PDUMP_DRIVER_WRITE WriteRoutine;

 PDUMP_DRIVER_FINISH FinishRoutine;

 struct _ADAPTER_OBJECT *AdapterObject;

 PVOID MappedRegisterBase;

© Copyright 2012 Mandiant Page 15

 PVOID PortConfiguration;

 BOOLEAN CrashDump;

 ULONG MaximumTransferSize;

 ULONG CommonBufferSize;

 PVOID TargetAddress;

 PDUMP_DRIVER_WRITE_PENDING WritePendingRoutine;

 ULONG PartitionStyle;

 union {

 struct {

 ULONG Signature;

 ULONG CheckSum;

 } Mbr;

 struct {

 GUID DiskId;

 } Gpt;

 } DiskInfo;

} DUMP_INITIALIZATION_CONTEXT, *PDUMP_INITIALIZATION_CONTEXT;

Figure 7: The dump callback routines in the DUMP_INITIALIZATION_CONTEXT structure

The dump port driver populates the OpenRoutine, WriteRoutine and FinishRoutine fields of

this structure with pointers to its own callback functions, which the kernel will call to write the crash

dump file to the boot disk drive’s paging file.

After the dump port driver is initialized, the second driver in the crash dump stack is the dump miniport

driver. The dump port driver relies on the miniport driver to carry out the I/O requests. The miniport

DriverEntry() routine registers information about its device’s hardware with the Port driver by

calling the export ScsiPortInitialize() for SCSI and AtaPortInitialize() for IDE. It

passes a structure that contains pointers to callbacks for various operations required by the port driver:

HwInitialize, HwResetBus, HwStartIo, HwInterrupt, HwAdapterControl, and

HwFindAdapter.

Finally, IoInitializeDumpStack() calls the DiskDumpOpen() callback of the dump port driver

to open the boot partition in preparation for writing to the page file.

Now that post-initialization of the crash dump I/O path is complete, IoWriteCrashDump() creates

the dump file as follows:

o Displays the dump string “Beginning dump of physical memory”, stored in the

DUMP_CONTROL_BLOCK structure

o Calculates the dump storage space required based on configuration

o Fills a dump header with bug check codes and other debug information

o Invokes all BugCheckDumpIoCallback callbacks registered with the kernel via

KeRegisterBugCheckReasonCallback() [5], passing the dump header

o Writes the appropriate dump file and data as configured in the system registry. If the

system is configured to dump only summary crash dumps, IoWriteCrashDump() calls

IopWriteSummaryHeader()/IopWriteSummaryDump(). If the system is

configured for a triage dump, it calls IopWriteTriageDump().

o Invokes all BugCheckSecondaryDumpDataCallback callbacks to allow drivers to

append data to the completed crash dump file.

© Copyright 2012 Mandiant Page 16

o Invokes all BugCheckDumpIoCallback callbacks, informing them crash dump is

complete.

Crash Dump Stack Usage in Windows Vista and Later

The usage of the crash dump stack in Vista and later operating systems is similar to prior versions,

except the majority of the crash dump stack management code is in the crashdmp.sys driver.

Additionally, new, undocumented dump structures are used in this driver. As discussed earlier, the

kernel uses a CrashDmpCallTable variable to call various internal functions within the

crashdmp.sys driver.

When the system encounters a crash, the kernel function KeBugCheck2() calls

IoWriteCrashDump(), which behaves differently than versions of earlier operating systems.

IoWriteCrashDump() does not call any entry points for drivers in the crash dump stack. Instead, it

just stores the dump information in the global crash dump block configured earlier, as follows:

 Calls the eighth entry in the CrashDmpCallTable table, CrashDmpNotify() which

simply validates the integrity of the internal dump context structure and displays the string

“collecting data for crash dump”

 Fills dump block with bug check codes and other debug information

 Appends a triage dump if the system is configured to do so

 Invokes all BugCheckAddPagesCallback callbacks and appends any dump pages returned

by these callbacks to the dump data

 Calls the ninth entry in the CrashDmpCallTable table, CrashDmpWrite(), passing the

configured dump block

At this point, the crashdmp.sys driver takes over writing the crash dump data to disk:

IoWriteCrashDump() returns after this call and the kernel finishes bringing the system down after

the bug check. The process of writing the crash dump data to disk in CrashDmpWrite() is

summarized in the following call stack outline:

 CrashdmpInitDumpStack()

o StartFilterDrivers() – this calls the DumpStart callback of each crash dump

filter driver registered with the system.

o InitializeDumpDriver() or InitializeDumpPath()

 InitializeDumpDriver() – calls the entry point of each driver in the

dump stack, passing a null pointer and a pointer to the

DUMP_INITIALIZATION_CONTEXT structure to the dump port driver.

After all dump drivers have been called, it calls the DiskDumpOpen callback

provided by the dump port driver.

 InitializeDumpPath() – first initializes the dump block structure before

simply calling InitalizeDumpDriver()

© Copyright 2012 Mandiant Page 17

o DumpWrite() – carries out the actual writing of crash dump data to disk based on the

configured crash dump type:

 FillDumpHeader() – loads the dump header with debugging information

 WriteFullDump() or WriteKernelDump() or WriteMiniDump() –

one of these functions is called to optionally append a full dump, kernel dump

or mini dump to the dump header.

o InvokeSecondaryDumpCallbacks() - Invokes all

BugCheckSecondaryDumpDataCallback callbacks to allow drivers to append

data to the completed crash dump file.

o InvokeDumpCallbacks() - Invokes all BugCheckDumpIoCallback callbacks,

informing them crash dump is complete.

The dump port and miniport drivers operate the same as in prior versions of Windows.

Leveraging the Crash Dump Stack
The crash dump mechanism represents a pristine path to disk, tucked away in the bowels of the

operating system. The problem is that it is specifically limited to writing data to the disk (more

accurately, to the paging file). As the prior sections have outlined, crash dump data is written to disk by

calling the dump port driver’s DiskDumpWrite export, which in turn calls the appropriate miniport

function with a SCSI Request Block (SRB) or IDE Request Block (IRB). There is an open, write and finish

function exported by the dump port driver for use by the crash dump process, but no corresponding

read function. If there were a read function supplied, it would be a simple matter of calling that

function to read disk. The following section explores how to leverage what has been presented about

the internal crash dump structures to coerce the crash dump stack to allow both reading and writing to

arbitrary disk locations. Figure 4 below summarizes the steps outlined in this section.

Figure 8: Using the crash dump I/O path

Identify Crash Dump Port and Miniport Drivers

Before the crash dump drivers can be used, they must be located in memory. Since all drivers in the

crash dump stack are prefixed with the string “dump_”, they can easily be singled out by searching the

loaded module list for modules named with that prefix. Since it is known that the dump port driver

must be one of “dump_scsiport” (SCSI), “dump_storport” (Storport), or “dump_ataport” (for IDE/ATA), it

is trivial to identify the dump port driver. However, the dump miniport driver is provided by the

hardware vendor and can be named anything (e.g., “dump_LSI_SAS”, “dump_vmscsi”, etc.). The name

© Copyright 2012 Mandiant Page 18

can be obtained by opening a handle to the boot device’s device object. Typically, a handle to the boot

device can be obtained through the named device \\Device\Harddisk0\DR0, which represents

the device object for the boot disk as setup by the class driver (i.e., disk.sys). This device object can

be “walked” via kernel-provided API’s to find the lowest driver object attached to the disk device stack.

The name stored in this lowest driver object will be the name of the miniport driver. During crash dump

initialization, the operating system obtains the miniport driver name using a global ARC string named

ArcBootDeviceName which contains the Arc path information to the boot device.

In certain versions of Windows, there is a second way to identify these drivers through the

IOCTL_SCSI_GET_DUMP_POINTERS command. If this command is successfully issued to the boot device

(via the named device), a structure of documented type DUMP_POINTERS_EX is returned. The last field

in this structure is named DriverList and contains a null-separated list of the drivers in the dump stack.

To verify the correct drivers are found, their code sections and/or export tables could be parsed to

identify known/required functions.

Now that the drivers have been located, there is an additional initialization step that must be

completed. It is useful to recap what is known about the crash dump stack at the point the system has

booted up:

1. The crash dump drivers have been mapped into memory

2. The global dump structures have been initialized

All components have been initialized, but an important step has not been completed: calling the dump

drivers’ entry points. This isn’t done by the operating system until a bug check actually occurs and the

system is crashing. Thus, in order to use the crash dump stack outside of the operating system, the

driver entry points must be called. Since they have been located in memory, it is simply a matter of

finding their module information (e.g., by walking the load driver module list using the

PsLoadedModuleList technique) and calling their entry points with the correct structures. As

discussed in prior sections, the port driver takes the dump initialization structure as a second argument

and the miniport driver takes two null arguments.

Get Boot Device Information

The following boot device information is required in order to use the crash dump I/O path:

 Dump pointers – of type DUMP_POINTERS or DUMP_POINTERS_EX obtained via a

IOCTL_SCSI_GET_DUMP_POINTERS query to the boot device; this query returns register

mapping information and hardware port configuration information that is used by the miniport

to program the device.

 SCSI address – obtained via IOCTL_GET_SCSI_ADDRESS; contains PathId, TargetId, and Lun

path information of the underlying device which are used in building the I/O request later in the

technique.

© Copyright 2012 Mandiant Page 19

Find the Dump Port Driver’s StartIo or DispatchCrb Routine

At this point in the process, the crash dump drivers have been located and their entry points have been

called. How does one send disk read/write requests to these drivers? To answer this question, it is

necessary to quickly discuss how normal I/O is handled in Windows, since the first logical answer might

be to try to communicate with the crash dump port driver’s device object.

In Windows, I/O is processed by communicating with a logical representation of the physical hardware

called a device object which is normally setup by the driver that runs the device. In the case of a

miniport driver in the normal I/O stack, the device object is actually setup by the operating system’s port

driver on behalf of the miniport driver [3]:

In some technology areas, a minidriver that is associated with a class driver or port driver does not have

to create its own device objects. Instead, the class or port driver creates the device object, and receives

all IRPs for the device. The class or port driver then uses a driver-specific method to pass the I/O request

to the minidriver.

For example, the disassembly of the normal I/O path’s SCSI port driver’s (scsiport.sys)

ScsiPortInitialize() function, which all miniport drivers call in their DriverEntry()

routine, shows that the port driver takes care of setting up a named device for the physical hardware

hosted by the miniport driver:

Figure 9: The Normal I/O Path Port Driver configures the miniport’s device object

However, this code does not exist in the dump port driver, which corroborates the discovery (discussed

in the crash dump initialization section) that the dump drivers are loaded without creating any

associated DRIVER_OBJECT or DEVICE_OBJECT structures. Thus, the dump stack does not have a

device object associated with it, and therefore traditional means of I/O will not work. This makes

perfect sense, because in normal use of the crash dump, the I/O subsystem would be disabled due to

the system crash.

© Copyright 2012 Mandiant Page 20

For SCSI devices, another possible way to send I/O to the crash dump port driver is through the dump

port driver’s StartIo function. The standard StartIo function as described on MSDN [6]:

As its name suggests, a StartIo routine is responsible for starting an I/O operation on the physical device.

Most lowest-level drivers provide a StartIo routine and rely on the I/O manager to queue IRPs to a

system-supplied device queue. Some lowest-level drivers are designed to set up and manage their own

supplemental IRP queues, but even these usually also provide a StartIo routine.

As was already discussed, the I/O manager can’t be used to send IRP’s to the dump port driver’s

StartIo function. As the description above mentioned, some lowest-level drivers have their own

internal queueing mechanism, and since the dump drivers are designed to operate in a special mode

completely divorced of the I/O subsystem, it might be possible to call the StartIo function directly.

Analysis shows that the StartIo function in the dump port driver takes a single argument (a deviation

from the standard StartIo prototype, which takes two arguments), a SCSI Request Block (SRB). In the

Normal I/O path, I/O requests traverse the storage device stack down to a storage class driver, which

converts the corresponding IRP to an SRB, which is passed to the storage port driver. The port driver

passes the SRB onto the miniport driver, which translates the request into a format specific to its

hardware. But in the crash dump scenario case, rather than an IRP being built by the I/O manager, it is

possible to build the SRB directly using hardware-specific information needed to complete the request.

This structure can then be sent directly to the dump port driver, which passes it to the miniport for

completion.

The StartIo routine is optional for all drivers, and although it is included in the crash dump port

driver, it is not exported. However, the function can be dynamically located by scanning the code

(“.text”) section of the driver’s image in memory for some recognizable bytes.

For IDE devices, the overall process is similar, but instead of StartIo with a single SRB argument, the

dumpata port driver uses the internal function DispatchCrb which takes a single argument, a

channel extension. This function must also be dynamically located.

Find the Dump Port Driver’s Device Extension

At this point in the process, the crash dump drivers have been located and initialized, and the dump port

driver’s StartIo/DispatchCrb function has been located, which will be used to send I/O requests

to the device. Before sending the request, there is some additional initialization that needs to take

place.

One of the critical pieces of this technique is manipulating the device extension structure which is

passed between and used by both the dump port and miniport drivers. For SCSI devices, the device

extension structure contains similarities between the partially documented type

HW_INITIALIZATION_DATA and the SCSI_PORT_DEVICE_EXTENSION from ReactOs [7]. For

IDE devices, the structure is a channel extension structure, which stores information about a particular

channel on an IDE controller. For both cases, it is not necessary to know all of the details about what is

© Copyright 2012 Mandiant Page 21

contained in these structures, as most of the required fields are populated when the dump port and

miniport DriverEntry routines are called.

However, it is necessary to manually initialize the field that represents the I/O request being sent.

Normally this field is setup by the DiskDumpWrite callback when crash dump data is being written,

but this function obviously is not going to be called when using the crash dump stack independent of the

crash dump process. Because the device extension is an internal (not exported) variable, its address

must be located through some other means. Basically an “information leak” is needed – that is, an

instance in some function where a pointer to the device extension is stored in a register that survives

the function. Fortunately, such a leak exists in dump port drivers for both SCSI and IDE. As an example,

for the SCSI dump port driver diskdump.sys, the leak exists in the DiskDumpOpen function, which

is a callback used by the kernel to prepare the crash dump file:

Figure 10: Information leak in DiskDumpOpen callback of diskdump.sys

In the disassembly above, a pointer to the internal device extension variable _DeviceExtension is

stored in the ecx register and is never cleared. Therefore, simply calling the DiskDumpOpen callback

will provide the pointer to the internal variable. At this point, the field can be manually allocated and

the request sent. This information “leak” exists on all versions of Windows in the SCSI dump port driver

diskdump.sys, but the offset is different for 64-bit architectures. Table 3 below shows where these

leaks exist according to transport and architecture.

Transport Leaking Function Leaked in Register Architecture

SCSI/Storoprt
(diskdump.sys)

DiskDumpOpen ecx x86

SCSI/Storport
(diskdump.sys)

DriverEntry rdx x64

IDE (dumpata.sys) IdeDumpOpen ecx x86

© Copyright 2012 Mandiant Page 22

IDE (dumpata.sys) IdeDumpOpen rcx x64
Table 3: Locations of Device Extension Leaks

Instantiate and Transmit SCSI/IDE Request Block

After locating the dump port driver’s device extension, the field that represents the I/O request must be

initialized.

For the SCSI dump port driver, this field is an MDL stored in the device extension. The MDL describes

the buffer to be read from or written to pertaining to the requested operation (the DataBuffer field

of the SRB). The MDL is one of the arguments to DiskDumpWrite, whose prototype is:

typedef

NTSTATUS

(*PDUMP_DRIVER_WRITE) (

 IN PLARGE_INTEGER DiskByteOffset,

 IN PMDL Mdl

);

Figure 11: DiskDumpWrite prototype

DiskDumpWrite in turn calls MmMapMemoryDumpMdl() to map the MDL into a fixed address

space, as shown in the disassembly below, and the resulting pointer is stored at offset 0xD0 (0x118

on x64).

Figure 12: DiskDumpWrite stores the MDL in the device extension

The DiskDumpWrite callback is not used by the technique described in this paper, because it carries

out only a write operation. Instead, the StartIo function, whose disassembly is shown below, is used

to execute an arbitrary SRB.

© Copyright 2012 Mandiant Page 23

Figure 13: StartIo also allocates the MDL via AllocateScatterGatherList()

StartIo() stores the provided MDL at the same offset as DiskDumpWrite via

AllocateScatterGatherList(). It calls IoMapTransfer() to setup map registers for the

SCSI disk’s adapter object to map a DMA transfer from the disk to system memory via the locked-down

buffer in the MDL.

Thus, to use the crash dump stack for SCSI drives, it is a simple matter of crafting an SRB, creating an

MDL for it at the appropriate offset, and sending the SRB directly to StartIo. The format of an SRB

(documented structure) is shown below.

typedef struct _SCSI_REQUEST_BLOCK {

 USHORT Length;

 UCHAR Function;

 UCHAR SrbStatus;

 UCHAR ScsiStatus;

 UCHAR PathId;

 UCHAR TargetId;

 UCHAR Lun;

 UCHAR QueueTag;

 UCHAR QueueAction;

 UCHAR CdbLength;

 UCHAR SenseInfoBufferLength;

 ULONG SrbFlags;

 ULONG DataTransferLength;

 ULONG TimeOutValue;

 PVOID DataBuffer;

 PVOID SenseInfoBuffer;

 struct _SCSI_REQUEST_BLOCK *NextSrb;

 PVOID OriginalRequest;

 PVOID SrbExtension;

 union {

ULONG InternalStatus;

ULONG QueueSortKey;

 };

 UCHAR Cdb[16];

} SCSI_REQUEST_BLOCK, *PSCSI_REQUEST_BLOCK;

Figure 14: The SCSI_REQUEST_BLOCK structure

The highlighted fields will need to be populated before sending the request:

 Length - the size of the SRB structure

 Function – the value SRB_FUNCTION_EXECUTE_SCSI which directs the device to

execute a SCSI-2 compliant command descriptor block

© Copyright 2012 Mandiant Page 24

 PathId, TargetId, Lun – the corresponding values stored in a SCSI_ADDRESS structure

which describe the path to the boot device

 CdbLength – the number of bytes in the attached Cdb command

 SrbFlags – Flags that describe the type of requested operation

 DataTransferLength – the number of bytes to be read from or written to disk

 TimeOutValue – time in seconds for the operation to timeout

 DataBuffer – pointer to system space memory where the device will copy to or read from

 Cdb – the SCSI-2 compliant command descriptor block (CDB) which describes the SCSI operation

the device will carry out

The CDB field describes the requested SCSI operation, and the values stored there will vary based on the

type of operation. For example, to read the boot sector (bytes 0 through 512 in first sector), a 10-byte

command could be used in order to support 32-bit logical block address (LBA). In such an example, the

SRB.CdbLength field would be set to 10 and the CDB structure would be filled out as shown in the

illustration below. The complete SCSI-2 specification is available on the internet at various sources

including [4].

Srb.Cdb[0] = SCSIOP_READ; //operation

Srb.Cdb[1] = 0; //LUN-DPO-FUA-Reserved-RelAddr

Srb.Cdb[2] = 0; //LBA (MSB)

Srb.Cdb[3] = 0; //..

Srb.Cdb[4] = 0; //..

Srb.Cdb[5] = 0; //LBA (LSB)

Srb.Cdb[6] = 0; //reserved

Srb.Cdb[7] = 0; //MSB transfer length (# blocks, 1 block = 512 bytes)

Srb.Cdb[8] = 1; //LSB transfer length

Srb.Cdb[9] = 0; //control byte

Figure 15: SRB to read the MBR

Now that the SRB has been built, it is a simple matter of passing it to StartIo. Once the request is

completed, the result will be stored in the DataBuffer field of the SRB.

For the IDE dump port driver (dumpata.sys), the device extension is of a format similar to an IDE

channel extension structure. It is allocated in the IdeDumpPortInitialize routine, which is called

from the dump port driver’s DriverEntry. The device extension structure (CRB) is stored in the

DUMP_INITIALIZATION_CONTEXT structure passed to it by the crashdmp.sys driver. In the

disassembly below, the device extension of size 0x8000 is stored in the MemoryBlock field of the

DUMP_INITIALIZATION_CONTEXT structure.

© Copyright 2012 Mandiant Page 25

Figure 16: IdeDumpPortInitialize() stores the dump extension in the MemoryBlock field

When the DiskDumpWrite callback is called, it calls IdeDumpWritePending(), whose

disassembly is shown below.

Figure 17: IdeDumpWritePending() initializes the controller extension

IdeDumpWritePending() sets up a write IRB in the CRB as follows:

 Initializes a CRB at offset 0x120 (0x1C0 for x64) in the device extension (CRB)

 Calls IdeDumpSetupWriteCrb() which initializes a write IDE_REQUEST_BLOCK and calls

IdeDumpAddMdlToCrb() to save the MDL passed to the DiskDumpWrite callback at

offset 0x50 (0x88 for x64)

 Calls DispatchCrb() to complete the I/O write request

© Copyright 2012 Mandiant Page 26

 Waits for the request to complete by calling IdeDumpWaitOnRequest(), which uses

hardware polling to query the drive until it has either successfully completed the request or

returned an error code

DispatchCrb() fills in the remaining fields of the IRB, performs the register mapping and sends the

request to the miniport driver.

Figure 18: DispatchCrb() completes initialization and transmits I/O to the miniport

As shown in the function disassembly above, IdeDumpAllocateScatterGatherList() is called.

This function performs the same task as the AllocateScatterGatherList() function in the SCSI

dump port driver. IdeDumpMapBuffers() locks the buffers into system space, then the request is

sent to the miniport driver via the miniport’s StartIo() function (in this case, the dump_atapi

dump miniport’s AtapiHwStartIo()). The DispatchCrb() function finally calls

IdeDumpCompletionDpc() which calls a completion function stored at offset 0x4 in the CRB.

A simpler example of instantiating an IRB and using DispatchCrb() inside the dump port driver can

be found in IdeDumpIssueIdentify(), shown below. This function is used to issue an ATA

identify request to retrieve meta information about an IDE drive, such as channel, drive number, serial

number, etc.

© Copyright 2012 Mandiant Page 27

IdeDumpIssueIdentify() provides a good template for using the crash dump stack for IDE drives.

The process can be summarized as follows:

 Allocate a CRB in DUMP_INITIALIZATION_CONTEXT.MemoryBlock at the correct offset

(0x120 for x86, 0x1C0 for x64)

 Store a pointer to a callback function in the CRB at offset 0x4, which will be invoked when the

dump port driver is notified that the I/O request is complete

 Allocate and fill in an IRB at offset 0x288 (0x3E8 for x64) in the CRB

 Allocate an MDL at offset 0x50 (0x88 for x64) in the CRB

 Send the CRB to DispatchCrb()

 Call a custom function that implements a polling mechanism to wait for the request to

complete, or call the internal IdeDumpWaitOnRequest() function

There is a second method for using the crash dump stack on IDE drives without interacting with the port

driver at all:

 Allocate a CRB in DUMP_INITIALIZATION_CONTEXT.MemoryBlock at the correct offset

(0x120 for x86, 0x1C0 for x64)

 Store a pointer to a callback function in the CRB at offset 0x4, which will be invoked when the

dump port driver is notified that the I/O request is complete

 Allocate and fill in an IRB at offset 0x288 (0x3E8 for x64) in the CRB

 Call the miniport’s HwStartIo routine, which is stored at offset 0x2E in the device extension,

passing the device extension and the IRB

 Poll the device until the IRB status changes from zero by calling the miniport’s HwInterrupt

routine which is stored at offset 0x2F in the device extension, passing the device extension only

The IDE request block is a documented format available at [8]. Most of the fields are comparable to the

format of the SRB with the following key exceptions which are evident in the disassembly above:

© Copyright 2012 Mandiant Page 28

 The Function field should be set to IRB_FUNCTION_ATA_COMMAND

 The Channel field should be set to the value stored in the channel extension’s Channel field

which is at offset 0x8A (0xEA for x64) from the start of the

DUMP_INITIALIZATION_CONTEXT.MemoryBlock structure

 The TargetId field should be set to the value stored in the channel extension’s TargetId

field which is at offset 0x45D (0x6A9 for x64) from the start of the

DUMP_INITIALIZATION_CONTEXT.MemoryBlock structure

 The Lun field should be set to the value stored in the channel extension’s Lun field which is at

offset 0x45E (0x6AA for x64) from the start of the

DUMP_INITIALIZATION_CONTEXT.MemoryBlock structure

Subverting the TDL4 Bootkit
The TDL4 bootkit contaminates the normal I/O path by overwriting pointers in the device object of the

port and miniport drivers with pointers to its own I/O filtering functions. These functions watch for

requests to read the master boot record (located at sector 0) and return a copy of the clean MBR which

it keeps in a secret place on disk. The purpose of this misdirection is to fool the investigator into

believing the system is not infected, since a normal MBR is returned. The screenshot below shows the

clean MBR as read by Sleuth Kit on an uninfected and an infected machine (as noted above, they should

match).

© Copyright 2012 Mandiant Page 29

Figure 19: The clean copy of the MBR as returned by TDL4

The proof-of-concept driver implementing the technique discussed in this paper for SCSI is loaded and

the MBR is read. The output of the driver is shown below.

kape: IRP_MJ_DEVICE_CONTROL. Control Code 70ff801c

kape: GetMBR(): Found dump driver entry points:

 dump_scsiport.sys: f8150b85

 dump_vmscsi.sys: f814bbbe

kape: GetMBR(): Boot device: LUN=0, TargetId=0, PathId=0, Port=2

kape: GetMBR(): Boot device object at 82309598

kape: GetMBR(): Contacting disk driver to get dump pointers...

kape: GetMBR(): Sending device usage notification request...

kape: GetMBR(): Allocating required buffers...

kape: GetMBR(): Calling dump port and miniport driver entry points...success!

kape: FindDriverStartIoAddress(): Text section at f814e300 (size 8102) .

kape: GetMBR(): DriverStartIo found at address f814e648.

kape: GetMBR(): Located dump port DeviceExtension pointer at 81d44010!

kape: GetMBR(): Storing pointer to an allocated MDL at DeviceExtension address 81d440e0!

kape: GetMBR(): Sending SRB...status:

 Srb.SrbStatus = 00000000

 Srb.ScsiStatus = 00000000

 Srb.InternalStatus = 00000000

kape: Srb.DataBuffer:

33c08ed0bc007cfb5007501ffcbe1b7cbf1b065057b9e501f3a4cbbdbe07b104386e007c09751383c510e2f4cd188bf58

3c610497419382c74f6a0b507b4078bf0ac3c0074fcbb0700b40ecd10ebf2884e10e84600732afe4610807e040b740b80

© Copyright 2012 Mandiant Page 30

7e040c7405a0b60775d2804602068346080683560a00e821007305a0b607ebbc813efe7d55aa740b807e100074c8a0b70

7eba98bfc1e578bf5cbbf05008a5600b408cd1372238ac1243f988ade8afc43f7e38bd186d6b106d2ee42f7e239560a77

237205394608731cb80102bb007c8b4e028b5600cd1373514f744e32e48a5600cd13ebe48a560060bbaa55b441cd13723

681fb55aa7530f6c101742b61606a006a00ff760aff76086a0068007c6a016a10b4428bf4cd136161730e4f740b32e48a

5600cd13ebd661f9c3496e76616c696420706172746974696f6e207461626c65004572726f72206c6f6164696e67206f7

065726174696e672073797374656d004d697373696e67206f7065726174696e672073797374656d000000000000000000

000

02c4463540c540c00008001010007feffff3f00000011acff0300

0055aa

kape: OnStubDispatch

kape: OnStubDispatch

Figure 20: Output from Proof-of-Concept utility to retrieve hidden MBR

A view of this MBR in a hex editor is shown below. Visual inspection reveals numerous differences in

this MBR and the previous one.

Figure 21: Contaminated TDL boot record hidden by rootkit

Disassembling this 16-bit boot sector code reveals a short decryption (rol/xor) routine typical of the

TDL family. Thus, the concealed, infected MBR has been revealed by using the crash dump I/O path.

Caveats and Further Work
The technique described in this paper has been verified to work for SCSI transports (scsiport.sys and

storport.sys) on x86 versions of Windows XP and 7. The strategies for IDE drives (ataport.sys) were

© Copyright 2012 Mandiant Page 31

verified in so far as leveraging the crash dump stack to send an IRB to the device. The first technique of

using DispatchCrb successfully transmitted an IRB to the device, but the result buffer was filled with

garbage instead of the requested data. The second technique of using the miniport directly returned all

zeroes in the result buffer and an unknown ATA status with IRB data length mismatch error. It is likely

that either the IDE_TASK_FILE component of the IRB was improperly constructed or a required data

length value is missing from the CRB or dump extension structure. 64-bit operating systems were not

tested due to time constraints, but this is a simple exercise in validating the offset adjustments are

correct.

Some storage driver professionals have mentioned on various online forums that attempting to call a

driver’s StartIo directly, rather than going through the I/O manager, could violate design principles of

the target driver, resulting in system deadlocks [9]. Even though the design constraints of the crash

dump environment (synchronous I/O, single-threaded, single processor) allow for such a violation,

activating and using the crash dump mechanism during normal system operation could theoretically

result in undefined behavior.

References

[1] http://www.sleuthkit.org/

[2] http://msdn.microsoft.com/en-us/library/ff564084(v=VS.85).aspx

[3] http://msdn.microsoft.com/en-us/library/windows/hardware/ff542862(v=vs.85).aspx

[4] http://ldkelley.com/SCSI2/SCSI2/SCSI2-07.html

[5] http://msdn.microsoft.com/en-us/library/windows/hardware/ff553110(v=vs.85).aspx

[6] http://msdn.microsoft.com/en-us/library/windows/hardware/ff566404(v=vs.85).aspx

[7] http://doxygen.reactos.org/d5/d38/scsiport__int_8h_source.html

[8] http://msdn.microsoft.com/en-us/library/windows/hardware/ff559140(v=vs.85).aspx

[9] http://www.osronline.com/showthread.cfm?link=183317

Resources and Further Reading
The Windows Research Kernel (WRK) and various operating system source code repositories on the

internet (such as ReactOs) might provide useful information for reversing the crash dump mechanism:

 sysload.c – loader functions such as MmLoadSystemImage

 dumpctl.c – crash dump control functions

 io.h – I/O header defs

 hal.h – useful macros, header defs

 internal.c – driver object creation and dynamic loading

 ioinit.c, iodata.c

The WRK can be downloaded at

https://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=7366&c1=en-

us&c2=0&Login=&wa=wsignin1.0

http://www.sleuthkit.org/
http://msdn.microsoft.com/en-us/library/ff564084(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff542862(v=vs.85).aspx
http://ldkelley.com/SCSI2/SCSI2/SCSI2-07.html
http://msdn.microsoft.com/en-us/library/windows/hardware/ff553110(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff566404(v=vs.85).aspx
http://doxygen.reactos.org/d5/d38/scsiport__int_8h_source.html
http://msdn.microsoft.com/en-us/library/windows/hardware/ff559140(v=vs.85).aspx
http://www.osronline.com/showthread.cfm?link=183317
https://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=7366&c1=en-us&c2=0&Login=&wa=wsignin1.0
https://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=7366&c1=en-us&c2=0&Login=&wa=wsignin1.0

© Copyright 2012 Mandiant Page 32

Other sources of potential value:

 ReactOs:

o scsiport.c, scsiport.h – SCSIPort implementation

 Win DDK:

o wdm.h

o ntddscsi.h

o SPTI example for sending SRBs from user mode (spti.h, spti.c)

o storport.h

o ata.h, irb.h

 classpnp example for sending SRBs from a driver

Additionally, Microsoft has published numerous guides for storage manufacturers on best practices for

writing ATAPort, SCSIPort and StorPort miniport drivers. These documents contain low-level tips and

gotchas straight from the kernel driver developers at Microsoft and provide invaluable insight.

