
© Copyright 2012

I/O, You own: Regaining control of

your disk in the presence of

bootkits

Aaron LeMasters

MANDIANT

© Copyright 2012

 Introduction

− How this relates to my work at Mandiant

 Terminology

 How the operating system initializes and uses the crash
dump stack:

− Pre-Vista

− Post-Vista

 How the crash dump stack can be used outside of the
operating system

 Demo: defeating TDL4

 Disclaimer: some of this might be wrong…

 Note: Glossing over details – please read the whitepaper!

Agenda and Introduction

© Copyright 2012

 Port driver – abstraction interface provided by OS,
hides underlying protocol details from class driver

 Miniport driver – manufacturer-supplied driver to
interface with hardware (Host Bus Adapter/HBA); linked
against port driver for specific transport technology

 Class driver – a driver that abstracts the underlying
technology of a category of devices that share similar
qualities (e.g., cdrom.sys)

 Normal I/O path – the route an I/O request takes during
regular system operation

 Crash dump I/O path – the route the kernel uses to
write a crash dump file to disk during a crash dump

Terminology
Basics

© Copyright 2012

Terminology
Normal I/O Path

© Copyright 2012

Terminology
Crash Dump I/O Path

© Copyright 2012

 When a bugcheck occurs, the OS has no idea where

the problem occurred – it could have happened inside a

driver in the normal I/O path.

 What differs between the two paths?

Terminology
Why two paths?

Normal I/O Path Crash Dump I/O Path

Primary drivers Many, layered Modified port and miniport

Filter drivers Many, layered Crash dump filters only

Controlled by I/O manager Kernel or crashdmp.sys

Documented? Yes *cough*

© Copyright 2012

 Encompasses the entire crash dump process

− From when it is initialized during system boot up to when it
is used after KeBugCheck2()

 Primary components:

− The kernel

− Crashdmp.sys (Vista+)

− The crash dump driver stack or just “crash dump stack”

Terminology
The Crash Dump Mechanism

© Copyright 2012

 A “stack” of drivers, consisting of:

− A dump port driver

− A dump miniport driver

− One or more crash dump filter drivers

 Initialized in two phases:

− System startup/page file creation (pre-initialization)

− System crash (post-initialization)

 Used when:

− A bug check occurs

− The system is about to hibernate

Terminology
The Crash Dump Stack

© Copyright 2012

Driver Name On Disk Driver Base Name in

Memory

Purpose

diskdump.sys dump_diskdump SCSI/Storport dump port

driver with required exports

from scsiport.sys and

storport.sys. This driver is

unloaded.

dumpata.sys dump_dumpata IDE/ATA dump port driver with

required ataport.sys exports.

This driver is unloaded.

scsiport.sys dump_scsiport The final SCSI/Storport dump

port driver.

ataport.sys dump_ataport The final IDE/ATA dump port

driver.

atapi.sys dump_atapi An older, generic ATAPI

miniport driver provided by the

OS for IDE/ATA drives

vmscsi.sys dump_vmscsi The miniport driver provided

by VMWare for SCSI drives.

LSI_SAS.sys dump_LSI_SAS The miniport driver provided

by LSI Corporation for serial-

attached storage drives.

dumpfve.sys dump_dumpfve Windows full volume

encryption crash dump filter

driver

The Crash Dump Driver Stack
Common Drivers

© Copyright 2012

 Normal I/O path is disabled

 All processors are disabled except the one the current

thread is executing on

 Active CPU becomes single-threaded (IRQL is raised to

HIGH_LEVEL) and uninterruptible

 I/O sent to the crash dump stack is synchronous

 If IDE controller, only the channel containing the device

with the paging file is enabled

Crash Dump Environment

© Copyright 2012

Crash Dump Stack Initialization

and Usage, Pre-Vista

© Copyright 2012

Initialization and Use

© Copyright 2012

 KiInitializeKernel()  IoInitSystem()

OR NtCreatePagingFile():

− IoInitializeCrashDump():

 IopInitializeDCB():

 Allocate IopDumpControlBlock structure

 Fill in basic debug information - # CPUs, architecture, OS version,

etc

 Read registry settings for crash dump configuration

Pre-Initialize Crash Dump Stack
Initialize IopDumpControlBlock

© Copyright 2012

IopDumpControlBlock – global kernel variable

typedef struct _DUMP_CONTROL_BLOCK
{
 UCHAR Type;
 CHAR Flags;
 USHORT Size;
 CHAR NumberProcessors;
 CHAR Reserved;
 USHORT ProcessorArchitecture;
 PDUMP_STACK_CONTEXT DumpStack;
 PPHYSICAL_MEMORY_DESCRIPTOR MemoryDescriptor;
 ULONG MemoryDescriptorLength;
 PLARGE_INTEGER FileDescriptorArray;
 ULONG FileDescriptorSize;
 …
}DUMP_CONTROL_BLOCK, *PDUMP_CONTROL_BLOCK;

Pre-Initialize Crash Dump Stack
IopDumpControlBlock

© Copyright 2012

− IoInitializeCrashDump():

 IoGetDumpStack()  IopGetDumpStack():

 Fills IopDumpControlBlock.DumpInit:

› Boot device type, geometry and hardware attributes

 Locates all crash dump drivers: port, miniport and crash dump filter

drivers

› Copies them into memory with “dump_” prefix

 No DRIVER_OBJECT or DEVICE_OBJECT!

› Port driver will be one of dump_scsiport, dump_ataport or

dump_storport; on disk either diskdump.sys (scsi/storport) or

dumpata.sys (ataport)

› Miniport can be named anything

 Fills IopDumpControlBlock.DumpStack with linked list of

copied drivers

Pre-Initialize Crash Dump Stack
Identify and Initialize Crash Dump Drivers

© Copyright 2012

Pre-Initialize Crash Dump Stack
IopDumpControlBlock.DumpStack

typedef struct _DUMP_STACK_CONTEXT

{

 DUMP_INITIALIZATION_CONTEXT Init;

 LARGE_INTEGER PartitionOffset;

 PVOID DumpPointers;

 ULONG PointersLength;

 PWCHAR ModulePrefix;

 LIST_ENTRY DriverList;

 ANSI_STRING InitMsg;

 ANSI_STRING ProgMsg;

 ANSI_STRING DoneMsg;

 PVOID FileObject;

 enum _DEVICE_USAGE_NOTIFICATION_TYPE UsageType;

} DUMP_STACK_CONTEXT, *PDUMP_STACK_CONTEXT;

© Copyright 2012

 DumpPointers - contains hardware-specific

information about the disk drive (via
IOCTL_SCSI_GET_DUMP_POINTERS) which is used

during write I/O operations to the crash dump file.

 DriverList - contains a linked list of data structures

that describe the driver image of each driver in the

crash dump stack; used at actual crash dump time to

initialize each driver

 Init - of type DUMP_INITIALIZATION_CONTEXT

(undocumented but exported), shown below, is only

partially filled in during the 1st phase of initialization.

Pre-Initialize Crash Dump Stack
IopDumpControlBlock.DumpStack

© Copyright 2012

Source: [3]

© Copyright 2012

Initialization and Use

© Copyright 2012

 During pre-initialization, drivers were only mapped into

memory - no management blocks created, no entry

points called

 Each driver in the dump stack will now have its entry

point called

 The first driver in the stack is always the dump port and

it is always called first

 Two arguments:

1. NULL

2. IopDumpControlBlock.DumpInit

Post-Initialize Crash Dump Stack
Call Dump Driver Entry Points

© Copyright 2012

Post-Initialize Crash Dump Stack
Call Dump Driver Entry Points

typedef struct _DUMP_INITIALIZATION_CONTEXT

{

 ULONG Length;

 ULONG Reserved;

 PVOID MemoryBlock;

 PVOID CommonBuffer[2];

 PHYSICAL_ADDRESS PhysicalAddress[2];

 PSTALL_ROUTINE StallRoutine;

 PDUMP_DRIVER_OPEN OpenRoutine;

 PDUMP_DRIVER_WRITE WriteRoutine;

 PDUMP_DRIVER_FINISH FinishRoutine;

 struct _ADAPTER_OBJECT *AdapterObject;

 PVOID MappedRegisterBase;

 PVOID PortConfiguration;

 …

} DUMP_INITIALIZATION_CONTEXT,*PDUMP_INITIALIZATION_CONTEXT;

© Copyright 2012

 OpenRoutine, WriteRoutine and FinishRoutine

fields are populated:

− pointers to functions exported by the dump port driver

which provide the kernel the ability to write the crash dump

data to the crash dump file

 The dump miniport driver’s DriverEntry is called

− registers with the dump port driver

 All other dump driver’s DriverEntry are called with

NULL arguments

− According to MSDN, this notifies them to operate in “crash

dump mode”

Post-Initialize Crash Dump Stack
Call Dump Driver Entry Points

© Copyright 2012

 KeBugCheck2()  IoWriteCrashDump():

− IoInitializeDumpStack() – performs post-initialization of
crash dump drivers

− DiskDumpOpen() – this port driver export is called to prepare
the crash dump file

− Displays the dump string “Beginning dump of physical memory”,
stored in the DUMP_CONTROL_BLOCK structure

− Calculates the dump storage space required based on
configuration

− Fills a dump header with bug check codes and other debug
information

− Invokes all BugCheckDumpIoCallback callbacks registered
with the kernel via
KeRegisterBugCheckReasonCallback(), passing the
dump header

Post-Initialize Crash Dump Stack
Call Dump Port Driver Callbacks

© Copyright 2012

 KeBugCheck2()  IoWriteCrashDump():

− IoInitializeDumpStack() – performs post-initialization of
crash dump drivers

− One of the following functions calls DiskDumpWrite() until all
crash dump data is written:

 IopWriteSummaryHeader()

 IopWriteSummaryDump()

 IopWriteTriageDump()

− Invokes all BugCheckSecondaryDumpDataCallback
callbacks to allow drivers to append data to the completed crash
dump file

− Calls DiskDumpFinish() to close crash dump file

− Invokes all BugCheckDumpIoCallback callbacks, informing
them crash dump is complete.

Data Written to Crash Dump File

© Copyright 2012

Crash Dump Stack Initialization

and Usage, Vista/Windows 7

© Copyright 2012

Initialization and Use

© Copyright 2012

 Nearly all of crash dump code was removed from kernel
and put in crashdmp.sys

 KiInitializeKernel()  IoInitSystem()

OR NtCreatePagingFile()

− IoInitializeCrashDump()

 IopLoadCrashDumpDriver() – loads crashdmp.sys

 Crashdmp!DriverEntry() – fills crash dump call table

 Entry point called with two arguments:

− Name of the arc boot device

− Pointer to a global crashdmp callback table

Pre-Initialize Crash Dump Stack
Load and Call Entry Point of Crashdmp.sys

© Copyright 2012

Table Offset Value

0x0 1

0x4 1

0x8 CrashdmpInitialize

0xC CrashdmpLoadDumpStack

0x10 CrashdmpInitDumpStack

0x14 CrashdmpFreeDumpStack

0x18 CrashdmpDisable

0x1C CrashdmpNotify

0x20 CrashdmpWrite

0x24 CrashdmpUpdatePhysicalRange

Pre-Initialize Crash Dump Stack
Crashdmp.sys call table

© Copyright 2012

 KiInitializeKernel()  IoInitSystem()

OR NtCreatePagingFile()

− IoInitializeCrashDump()

 Crashdmp!CrashDmpInitialize():

 Crashdmp!CrashdmpLoadDumpStack():

› Crashdump!QueryPortDriver()

› Crashdmp!LoadPortDriver()

› Crashdmp!LoadFilterDrivers()

› Crashdmp!InitializeFilterDrivers()

Pre-Initialize Crash Dump Stack
Identify and Initialize Crash Dump Drivers

© Copyright 2012

Source: [3]

© Copyright 2012

Initialization and Use

© Copyright 2012

 KeBugCheck2()  IoWriteCrashDump():

− Calls the eighth entry in the CrashDmpCallTable table,

CrashDmpNotify() - displays the string “collecting data

for crash dump”

− Fills dump block with bug check codes and other debug

information

− Appends a triage dump if necessary

Post-Initialize Crash Dump Stack
Call Dump Driver Entry Points

© Copyright 2012

 KeBugCheck2()  IoWriteCrashDump():

− Calls the ninth entry in the CrashDmpCallTable table,

CrashDmpWrite():

 CrashdmpInitDumpStack():

 StartFilterDrivers() – calls the DumpStart callback of each

crash dump filter driver

 InitializeDumpDriver() – calls the dump driver entry point;

calls the DiskDumpOpen callback provided by the dump port driver.

Post-Initialize Crash Dump Stack
Call Dump Driver Entry Points/Port Driver Callbacks

© Copyright 2012

 KeBugCheck2()  IoWriteCrashDump():

 CrashDmpWrite():

 CrashdmpInitDumpStack():

 DumpWrite() – creates dump file based on configuration:

› FillDumpHeader()

› Calls one of:

 WriteFullDump()

 WriteKernelDump()

 WriteMiniDump()

 InvokeSecondaryDumpCallbacks() - Invokes all
BugCheckSecondaryDumpDataCallback callbacks to allow
drivers to append data to the completed crash dump file.

 InvokeDumpCallbacks() - Invokes all
BugCheckDumpIoCallback callbacks, informing them crash
dump is complete.

Data Written to Crash Dump File

© Copyright 2012

How to Use the Crash Dump

Stack Outside of the Operating

System

or

“How to Bypass the Normal I/O

Path”

© Copyright 2012

“A storage miniport driver that manages an adapter for a boot

device is subject to special restrictions during a system crash.

While dumping the system's memory image to disk, the

miniport driver must operate within a different environment.

The usual communication between the miniport driver, the port

driver, and disk class driver is interrupted. The kernel does

disk I/O by direct calls to the disk dump port driver

(diskdump.sys for SCSI adapters or dumpata.sys for ATA

controllers), bypassing file systems, and the normal I/O

stack. The disk dump driver, in turn, calls the boot device's

miniport driver to handle all I/O operations, and the disk dump

driver intercepts all of the miniport driver's calls to the port

driver.” [1]

Inspiration

© Copyright 2012

 The crash dump mechanism provides a pristine path to

disk

− But it only provides write capabilities

 Leverage knowledge of the crash dump mechanism

and internals of the port/miniport relationship to coerce

read/write

 Here’s how…

Leveraging the Crash Dump I/O Path

© Copyright 2012

Sort of like the OS does…

© Copyright 2012

…But more like this…

© Copyright 2012

 Walk loaded module list

 Single out dump drivers easily via “dump_” prefix

 Port driver will be one of dump_scsiport,

dump_storport or dump_ataport

 Miniport driver name:

− open a handle to the class driver’s device object, walk

attached devices to the lowest one

− Vista+ DUMP_POINTERS_EX.DriverList

 Once drivers have been found, call their entry points

with the appropriate arguments

Identify Crash Dump Port and Miniport

Drivers

© Copyright 2012

 IOCTL to get hardware register mapping and port

configuration information
(IOCTL_SCSI_GET_DUMP_POINTERS); data returned

in DUMP_POINTERS or DUMP_POINTERS_EX structure

 IOCTL to get boot device location such as Target id,
path Id, and Lun (IOCTL_GET_SCSI_ADDRESS); data

returned in a SCSI_ADDRESS structure

 Resulting information is stored in the
DUMP_INITIALIZATION_CONTEXT structure before

calling the dump port driver’s DriverEntry

Get Boot Device Information

© Copyright 2012

 How do we send I/O requests?

− There is no device object for dump port driver

 Use internal functions

− StartIo (SCSI) – accepts a single

SCSI_REQUEST_BLOCK (SRB) as argument

− DispatchCrb (IDE) – accepts a single argument, a

channel extension structure

 Find functions by scanning dump port driver’s image’s

text section for “magic bytes”

Find StartIo or DispatchCrb

© Copyright 2012

 Can’t simply call the internal functions, more

initialization required

 Port/miniport share a device extension structure that

must be properly initialized

− an internal variable of the port driver

− Most critical fields are filled in by dump port driver/miniport

driver’s DriverEntry routines

Find the Dump Port Driver’s Device

Extension

© Copyright 2012

 Can be found via info leak – pointer to device extension

survives function call

− Example: Diskdump.sys leaks in ecx register in

DiskDumpOpen()

Find the Dump Port Driver’s Device

Extension (cont’d)

Transport Leaking Function Leaked in Register Architecture

SCSI/Storoprt

(diskdump.sys)

DiskDumpOpen ecx x86

SCSI/Storport

(diskdump.sys)

DriverEntry rdx x64

IDE (dumpata.sys) IdeDumpOpen ecx x86

IDE (dumpata.sys) IdeDumpOpen rcx x64

© Copyright 2012

 Mimic DiskDumpWrite()

 Allocate an MDL at offset 0xD0 (0x118 x64) into the device

extension structure – MDL describes the SRB.DataBuffer

 Call StartIo()

Send SRB (SCSI)

© Copyright 2012

 After MDL is created, send an SRB as follows:

− SRB.Function - SRB_FUNCTION_EXECUTE_SCSI

− SRB.PathId, SRB.TargetId, SRB.Lun – set to

corresponding fields in SCSI_ADDRESS

− SRB.CdbLength - 10 for 10-byte SCSI-2 command

− SRB.SrbFlags - specify flags for a read operation

− SRB.DataTransferLength - 512

− SRB.DataBuffer - allocate 512 bytes NonPagedPool –

result stored here

− SRB.Cdb – the SCSI-2 command descriptor block (cdb)

Send SRB (SCSI) (cont’d)

© Copyright 2012

Send IRB (IDE) – The general idea

© Copyright 2012

 Relies on calling port driver internal functions

 Mimic IdeDumpWritePending()

− Allocate a CRB in
DUMP_INITIALIZATION_CONTEXT.MemoryBlock at
the correct offset (0x120 for x86, 0x1C0 for x64)

− Allocate and fill in an IRB at offset 0x288 (0x3E8 for x64)
in the CRB

− Store a pointer to a callback function in the CRB at offset
0x4, which will be invoked when the dump port driver is
notified that the I/O request is complete

− Allocate an MDL at offset 0x50 (0x88 for x64) in the CRB

− Send the CRB to DispatchCrb()

− Wait via IdeDumpWaitOnRequest()function

Send IRB (IDE) – Method 1

© Copyright 2012

 Completely bypass dump port driver

 Mimic IdeDumpWritePending()
− Allocate a CRB in
DUMP_INITIALIZATION_CONTEXT.MemoryBlock at the correct
offset (0x120 for x86, 0x1C0 for x64)

− Store a pointer to a callback function in the CRB at offset 0x4, which
will be invoked when the dump port driver is notified that the I/O
request is complete

− Allocate and fill in an IRB at offset 0x288 (0x3E8 for x64) in the
CRB

− Replace DispatchCrb() with
 Call the miniport’s HwStartIo routine, which is stored at offset 0x2E in

the device extension, passing the device extension and the IRB

 Replace IdeDumpWaitOnRequest() with:

 Poll the device until the IRB status changes from zero by calling the
miniport’s HwInterrupt routine which is stored at offset 0x2F in the
device extension, passing the device extension only

Send IRB (IDE) – Method 2

© Copyright 2012

 IRB.Function - IRB_FUNCTION_ATA_COMMAND

 IRB.Channel - should be set to the value stored in the

channel extension’s Channel field which is at offset
0x8A (0xEA for x64) from the start of the CRB

 IRB.TargetId - should be set to the value stored in

the channel extension’s TargetId field which is at offset
0x45D (0x6A9 for x64) from the start of the CRB

 IRB.Lun - should be set to the value stored in the

channel extension’s Lun field which is at offset 0x45E

(0x6AA for x64) from the start of the CRB

Send IRB (IDE) (cont’d)

© Copyright 2012

Defeating TDL4

© Copyright 2012

 Alureon/TDL4 has gained popularity in the last few

years

− Abuses driver trust chain by hooking the port and miniport

drivers, which are at the bottom of the disk driver stack

trust chain

− Modifies I/O requests in various ways to hide its rootkit file

system, as well as return a clean MBR

 Similar MBR/VBR rootkits include Popureb, Stoned,

Hasta La Vista, Zeroaccess

− Completely new strains, as well as variants, emerging

constantly

Recent MBR Rootkits

© Copyright 2012

 Modifies the miniport’s device object and driver object

− DRIVER_OBJECT.DriverStartIo  hooked

− DEVICE_OBJECT.DriverObject  hooked

− Lowest attached device is unlinked from the miniport
device by hooking DEVICE_OBJECT.NextDevice

 Monitors for read or write attempts to the boot sector

and its hidden file system

− If boot sector, return original, clean MBR

− If hidden file system, return zeroes

 For more info, see [2]

TDL4 Infection

© Copyright 2012

Defeating TDL4 (DEMO)

© Copyright 2012

 SCSI – working from Windows XP – 7 (tested)

− Can cause momentary (10-30s) explorer.exe unresponsiveness
(unclear if TDL influence)

 Pre-mature IRQL lowering? Need to wait on request to complete
or risk race/contention with normal I/O path

 IDE – polling is hard 

− Method 1: IRB sent, garbage returned 

 Either the port driver is messing up the IRB somewhere during
polling or we are missing a field in dump extension

− Method 2: IRB sent, nothing returned , Irb status 2 (data length
mismatch), ATA status 0x20 (?)

 IRB.TaskFile might have invalid values

 IDE_TASK_FILE: No examples anywhere!

 Dump extension field missing – data length?

Results – Full Disclosure!

© Copyright 2012

 Why is this important?

− We have a separate path to disk which is not currently hooked by
any malware I am aware of

 Tampering with the crash dump mechanism could destabilize the
system

− We can read AND write to disk this way

 The crash dump port driver only provides callbacks to write to
disk, but the StartIo function lets us issue any arbitrary SRB.

 The ability to write to disk with this technique provides us unique
remediation (file cleaning) opportunities

 Caveats:

− IDE not fully tested

− Experimental

 Tons of details left out – read the whitepaper!

Takeaways

© Copyright 2012

[1] http://msdn.microsoft.com/en-

us/library/ff564084(v=VS.85).aspx

[2] http://go.eset.com/us/resources/white-

papers/The_Evolution_of_TDL.pdf

[3] http://bsalert.com/f-store/bsod.jpg

References and Sources

http://msdn.microsoft.com/en-us/library/ff564084(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff564084(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff564084(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff564084(v=VS.85).aspx
http://go.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf
http://go.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf
http://go.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf
http://go.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf

© Copyright 2012

Select your topic:

 pdbxtract – pdb type information tool

 Arcane secrets of Skype permacatting

Oops – did we finish early?

© Copyright 2012

THANKS FOR LISTENING!!

Questions???

Aaron.LeMasters@Mandiant.com

@lilhoser

mailto:Aaron.LeMasters@Mandiant.com

